Design of Observer-based Compensators (eBook)

From the Time to the Frequency Domain
eBook Download: PDF
2009 | 1. Auflage
XIII, 285 Seiten
Springer London (Verlag)
978-1-84882-537-6 (ISBN)

Lese- und Medienproben

Design of Observer-based Compensators -  Joachim Deutscher,  Peter Hippe
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Design of Observer-based Compensators facilitates and adds transparency to design in the frequency domain which is not as well-established among control engineers as time domain design. The presentation of the design procedures starts with a review of the time domain results; therefore, the book also provides quick access to state space methods for control system design.

Frequency domain design of observer-based compensators of all orders is covered. The design of decoupling and disturbance rejecting controllers is presented, and solutions are given to the linear quadratic and the model matching problems. The pole assignment design is facilitated by a new parametric approach in the frequency domain. Anti-windup control is also investigated in the framework of the polynomial approach. The discrete-time results for disturbance rejection and linear quadratic control are also presented.

The book contains worked examples that can easily be reproduced by the reader, and the results are illustrated by simulations.



Peter Hippe was born in Berlin in 1941. He received the Dipl.-Ing. degree in mechanical engineering from Universität Stuttgart, Stuttgart in 1969 and the Dr.-Ing. degree from Friedrich-Alexander Universität, Erlangen in 1976. Since then he has been teaching in the Electrical Engineering Department. His main research interests are in the time and frequency domain design of compensators and the problems caused by constrained actuators. He has coauthored the book Zustandsregelung (Springer, 1985) and he is the author of the book Windup in Control (Springer, 2006)

Joachim Deutscher was born in Schweinfurt, Germany in 1970. He received the Dipl.-Ing. (FH) degree in Electrical Engineering from Fachhochschule Würzburg- Schweinfurt-Aschaffenburg in 1996, the Dipl.-Ing. Univ. degree in Electrical Engineering and the Dr.-Ing. degree from Universität Erlangen-Nürnberg in 1999 and 2003, respectively. He is head of the nonlinear control systems group at the Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg. His main research interests are in nonlinear control and in the application of polynomial matrix methods in control.


Design of Observer-based Compensators facilitates and adds transparency to design in the frequency domain which is not as well-established among control engineers as time domain design. The presentation of the design procedures starts with a review of the time domain results; therefore, the book also provides quick access to state space methods for control system design.Frequency domain design of observer-based compensators of all orders is covered. The design of decoupling and disturbance rejecting controllers is presented, and solutions are given to the linear quadratic and the model matching problems. The pole assignment design is facilitated by a new parametric approach in the frequency domain. Anti-windup control is also investigated in the framework of the polynomial approach. The discrete-time results for disturbance rejection and linear quadratic control are also presented.The book contains worked examples that can easily be reproduced by the reader, and the results are illustrated by simulations.

Peter Hippe was born in Berlin in 1941. He received the Dipl.-Ing. degree in mechanical engineering from Universität Stuttgart, Stuttgart in 1969 and the Dr.-Ing. degree from Friedrich-Alexander Universität, Erlangen in 1976. Since then he has been teaching in the Electrical Engineering Department. His main research interests are in the time and frequency domain design of compensators and the problems caused by constrained actuators. He has coauthored the book Zustandsregelung (Springer, 1985) and he is the author of the book Windup in Control (Springer, 2006)Joachim Deutscher was born in Schweinfurt, Germany in 1970. He received the Dipl.-Ing. (FH) degree in Electrical Engineering from Fachhochschule Würzburg- Schweinfurt-Aschaffenburg in 1996, the Dipl.-Ing. Univ. degree in Electrical Engineering and the Dr.-Ing. degree from Universität Erlangen-Nürnberg in 1999 and 2003, respectively. He is head of the nonlinear control systems group at the Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg. His main research interests are in nonlinear control and in the application of polynomial matrix methods in control.

Preface 5
Contents 10
1 Polynomial Matrix Fraction Descriptions 13
1.1 Right Coprime Matrix Fraction Description 13
1.2 Left Coprime Matrix Fraction Description 22
2 State Feedback Control 28
2.1 State Feedback in the Time Domain 29
2.2 Parameterization of the State Feedback in the Frequency Domain 31
3 State Observers 38
3.1 The Reduced-order Observer in the Time Domain 39
3.2 Parameterization of the Full-order Observer in the Frequency Domain 43
3.3 Parameterization of the Reduced-order Observer in the Frequency Domain 47
4 Observer-based Compensators 62
4.1 The Observer-based Compensator in the Time Domain 63
4.2 Representations of the Observer-based Compensator in the Frequency Domain 65
4.3 Computation of the Observer-based Compensator in the Frequency Domain 71
4.4 Summary of the Steps for the Design of Observer- based Compensators in the Frequency Domain 75
4.5 Prevention of Problems Caused by Input-signal Restrictions 81
5 Parametric Compensator Design 92
5.1 Parametric Design of State Feedback in the Time Domain 93
5.2 Parametric Design of State Feedback in the Frequency Domain 95
5.3 Parameterization of the State Feedback Gain Using the Pole Directions 101
5.4 Parametric Design of Reduced-order Observers in the Frequency Domain 103
5.5 Parametric Design of Reduced-order Observers in the Time Domain 114
6 Decoupling Control 118
6.1 Diagonal Decoupling 119
6.2 Decoupling with Coupled Rows 130
7 Disturbance Rejection Using the Internal Model Principle 142
7.1 Time-domain Approach to Disturbance Rejection 143
7.2 State Feedback Control of the Augmented System in the Frequency Domain 153
7.3 State Observer for the Non-augmented System in the Frequency Domain 158
7.4 Design of the Observer-based Compensator with an Internal Signal Model in the Frequency Domain 159
8 Optimal Control and Estimation 178
8.1 The Linear Quadratic Regulator in the Time Domain 179
8.2 The Linear Quadratic Regulator in the Frequency Domain 180
8.3 The Stationary Kalman Filter in the Time Domain 185
8.4 The Stationary Kalman Filter in the Frequency Domain 188
9 Model-matching Control with Two Degrees of Freedom 196
9.1 Model-based Feedforward Control in the Time Domain 198
9.2 Model-based Feedforward Control in the Frequency Domain 200
9.3 Tracking Control by State Feedback in the Time Domain 201
9.4 Tracking Control by State Feedback in the Frequency Domain 206
9.5 Observer-based Tracking Control in the Time Domain 209
9.6 Observer-based Tracking Control in the Frequency Domain 211
10 Observer-based Compensators with Disturbance Rejection for Discrete-time Systems 220
10.1 Discrete-time Control in the Time Domain 221
10.2 Discrete-time Control in the Frequency Domain 226
11 Optimal Control and Estimation for Discrete- time Systems 235
11.1 The Linear Quadratic Regulator in the Time Domain 236
11.2 The Linear Quadratic Regulator in the Frequency Domain 237
11.3 The Stationary Kalman Filter in the Time Domain 242
11.4 The Stationary Kalman Filter in the Frequency Domain 247
11.5 Observer-based Compensators with a posteriori State Estimate in the Frequency Domain 265
A Appendix 276
A.1 Computing a Row-reduced Polynomial Matrix¯D.(s) 276
A.2 Proof of Theorem 4.1 281
References 286
Index 290

Erscheint lt. Verlag 14.5.2009
Zusatzinfo XIII, 285 p.
Verlagsort London
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Nachrichtentechnik
Schlagworte Control • control system • Control Theory • decoupling • Feedback • Observer-based Control • optimal control • Polynomial Matrices • Polynomial Methods • Simulation • System
ISBN-10 1-84882-537-4 / 1848825374
ISBN-13 978-1-84882-537-6 / 9781848825376
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
24,90