Diophantine Approximation (eBook)

Festschrift for Wolfgang Schmidt
eBook Download: PDF
2008 | 2008
VII, 422 Seiten
Springer Wien (Verlag)
978-3-211-74280-8 (ISBN)

Lese- und Medienproben

Diophantine Approximation -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This volume contains 21 research and survey papers on recent developments in the field of diophantine approximation, which are based on lectures given at a conference at the Erwin Schrödinger-Institute (Vienna, 2003). The articles are either in the spirit of more classical diophantine analysis or of a geometric or combinatorial flavor. Several articles deal with estimates for the number of solutions of diophantine equations as well as with congruences and polynomials.

CONTENTS 6
PREFACE 8
THE MATHEMATICAL WORK OF WOLFGANG SCHMIDT 9
Introduction 9
1 Geometry of numbers 9
2 Uniform distribution 10
3 Approximation of real numbers 11
4 Heights 12
5 Approximation of algebraic numbers by rationals 12
6 Norm form equations 14
7 Transcendental numbers 15
8 Riemann hypothesis for curves 16
9 Nonlinear approximation of real numbers 17
10 Zeros and small values of forms 18
11 Quadratic geometry of numbers 19
12 Approximation of algebraic numbers – quantitative results 19
13 Norm form equations – quantitative results 20
14 Linear recurrence sequences 21
Publications byW. Schmidt 22
Additional cited references 27
SCHÄFFER’S DETERMINANT ARGUMENT 29
1 Introduction 29
2 Proofs of Theorems 2 and 3 31
3 A lemma with four alternatives 38
4 Proof of Theorem 1 43
References 47
ARITHMETIC PROGRESSIONS AND TIC- TAC- TOE GAMES 48
1 Van der Waerden’s theorem 48
2 Hypercube Tic-Tac-Toe and positional games 53
3 Win vs. Weak Win 63
4 Old lower bounds 66
5 New lower bound results 72
6 More new lower bounds via games 76
7 Big Game–Small Game decomposition 85
8 How good are the new lower bounds? Strong Draw and Weak Win 91
References 99
METRIC DISCREPANCY RESULTS FOR SEQUENCES {nk x} AND DIOPHANTINE EQUATIONS 101
1 Introduction 101
2 Comments on conditions B, C and G 107
References 110
MAHLER’S CLASSIFICATION OF NUMBERS COMPARED WITH KOKSMA’S, II 112
1 Introduction 112
2 Results 113
3 An auxiliary result 116
4 The inductive construction 117
5 Completion of the proof of Theorem 2 122
6 Proof of Theorem 3 123
7 Proof of Theorem 4 124
References 126
RATIONAL APPROXIMATIONS TO A q-ANALOGUE OF p AND SOME OTHER q-SERIES 127
1 Introduction 127
2 Main results and reduction 128
3 Hypergeometric construction 130
4 Integral construction 135
5 Proofs 137
References 142
ORTHOGONALITY AND DIGIT SHIFTS IN THE CLASSICAL MEAN SQUARES PROBLEM IN IRREGULARITIES OF POINT DISTRIBUTION 144
1 Introduction 144
2 Linear distributions 146
3 Deduction of Theorem 1 149
4 Deduction of Theorem 2 150
5 Walsh functions 151
6 More weights and metrics 153
7 Approximation of the discrepancy function 153
8 Deduction of Theorem 5 158
9 Deduction of Theorems 3 and 4 159
References 161
APPLICATIONS OF THE SUBSPACE THEOREM TO CERTAIN DIOPHANTINE PROBLEMS 163
Introduction 163
The quotient problem 164
The d-th root problem 169
Integral points on certain affine varieties 171
References 175
A GENERALIZATION OF THE SUBSPACE THEOREM WITH POLYNOMIALS OF HIGHER DEGREE 177
1 Introduction 177
2 Twisted heights 181
3 Proof of Theorem 2.1 183
4 Height estimates 188
5 Proof of Theorem 1.3 193
References 199
ON THE DIOPHANTINE EQUATION Gn(x) = Gm(y) WITH Q(x, y) = 0 201
1 Introduction 201
2 Results 203
3 Proof of Theorem 1 206
4 Proof of Theorem 2 210
References 211
A CRITERION FOR POLYNOMIALS TO DIVIDE INFINITELY MANY k-NOMIALS 212
1 Introduction 212
2 The main results 213
3 Basic lemmas 215
4 Proofs 216
References 221
APPROXIMANTS DE PADÉ DES q-POLYLOGARITHMES 222
1 Introduction 222
2 Démonstration du Théorème 2 225
3 Confluence du Théorème 2 vers le Théorème 1 228
Références 231
THE SET OF SOLUTIONS OF SOME EQUATION FOR LINEAR RECURRENCE SEQUENCES 232
References 236
COUNTING ALGEBRAIC NUMBERS WITH LARGE HEIGHT I 237
References 243
CLASS NUMBER CONDITIONS FOR THE DIAGONAL CASE OF THE EQUATION OF NAGELL AND LJUNGGREN 244
1 Introduction 244
2 Cyclotomic fields 246
3 Classical results revisited proofs of Theorems 1 and 2
4 General upper bounds 258
5 Lower bounds and proof of Theorem 4 269
6 Conclusion 271
References 272
CONSTRUCTION OF APPROXIMATIONS TO ZETA- VALUES 273
1 Introduction 273
2 Common denominator for coefficients of Ak(z) 276
3 Upper bounds for the coefficients of Ak(x) 282
4 Some examples 287
References 291
QUELQUES ASPECTS DIOPHANTIENS DES VARIÉTÉS TORIQUES PROJECTIVES 292
1 Introduction et résultats 292
2 Généralités sur les variétés toriques projectives 296
3 Équations et indices d’obstruction successifs 301
4 Volumes, hauteurs d’espaces tangents et degrés 307
5 Un théorème de Bézout pour les poids de Chow 310
6 Hauteur normalisée 315
7 Optimalité du théorème des minimums algébriques successifs 320
8 Poids de Chow et hauteur des diviseurs monomiaux 325
Références 334
UNE INÉGALITÉ DE LOJASIEWICZ ARITHMÉTIQUE 336
1 Résultat 336
2 Hauteurs 337
3 Minimum local 339
4 Minimum sur un pavé 341
5 Conclusion 342
Références 342
ON THE CONTINUED FRACTION EXPANSION OF A CLASS OF NUMBERS 343
1 Introduction 343
2 Notation and statements of the main results 344
3 Proof of Theorem 2.1 346
4 Proof of Theorem 2.2 348
5 Proof of Theorem 2.3 352
6 Proof of Theorem 2.4 355
References 357
THE NUMBER OF SOLUTIONS OF A LINEAR HOMOGENEOUS CONGRUENCE 358
References 365
A NOTE ON LYAPUNOV THEORY FOR BRUN ALGORITHM 366
1 Introduction 366
2 A skew product 368
3 Brun algorithm 370
References 374
ORBIT SUMS AND MODULAR VECTOR INVARIANTS 375
1 Introduction 375
2 Orbit sums 380
3 Proof of Theorem 1 and Corollary 2 399
4 A universal invariant 401
5 Proof of Theorem 3 402
References 406
NEW IRRATIONALITY RESULTS FOR DILOGARITHMS OF RATIONAL NUMBERS 407
1 Introduction 407
2 Double integrals and permutation groups related to the dilogarithm 408
3 Irrationality results for Li2(r/s) 412
4 Concluding remarks 416
References 416

Erscheint lt. Verlag 10.7.2008
Reihe/Serie Developments in Mathematics
Developments in Mathematics
Zusatzinfo VII, 422 p.
Verlagsort Vienna
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Technik
Schlagworte Algebra • continued fraction • diophantine • Diophantine approximation • Festschrift • Number Theory • Tichy • Wolfgang Schmidt
ISBN-10 3-211-74280-8 / 3211742808
ISBN-13 978-3-211-74280-8 / 9783211742808
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 18,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
16,99
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

eBook Download (2024)
De Gruyter (Verlag)
74,95