Stabilization, Optimal and Robust Control (eBook)
XXII, 502 Seiten
Springer London (Verlag)
978-1-84800-344-6 (ISBN)
Stabilization, Optimal and Robust Control develops robust control of infinite-dimensional dynamical systems derived from time-dependent coupled PDEs associated with boundary-value problems. Rigorous analysis takes into account nonlinear system dynamics, evolutionary and coupled PDE behaviour and the selection of function spaces in terms of solvability and model quality.
Mathematical foundations are provided so that the book remains accessible to the non-control-specialist. Following chapters giving a general view of convex analysis and optimization and robust and optimal control, problems arising in fluid mechanical, biological and materials scientific systems are laid out in detail.
The combination of mathematical fundamentals with application of current interest will make this book of much interest to researchers and graduate students looking at complex problems in mathematics, physics and biology as well as to control theorists.
Stabilization, Optimal and Robust Control develops robust control of infinite-dimensional dynamical systems derived from time-dependent coupled PDEs associated with boundary-value problems. Rigorous analysis takes into account nonlinear system dynamics, evolutionary and coupled PDE behaviour and the selection of function spaces in terms of solvability and model quality.Mathematical foundations are provided so that the book remains accessible to the non-control-specialist. Following chapters giving a general view of convex analysis and optimization and robust and optimal control, problems arising in fluid mechanical, biological and materials scientific systems are laid out in detail.The combination of mathematical fundamentals with application of current interest will make this book of much interest to researchers and graduate students looking at complex problems in mathematics, physics and biology as well as to control theorists.
Preface 7
Contents 11
Notation and Symbols 18
1 General Introduction 21
1.1 Motivations and Objectives 22
1.2 General Process of the Robust Control Theory 26
1.3 Applications to Biological and Physical Sciences 27
Part I Convex Analysis and Duality Principles 31
2 Convexity and Topology 32
2.1 Convex Sets 32
2.2 Convex Functions 38
2.3 G-Regularization and Continuous Affine Functions 58
3 A Brief Overview of Sobolev Spaces 61
3.1 Tools and Definitions 61
3.2 Some Properties of Sobolev Spaces 67
4 Legendre–Fenchel Transformation and Duality 74
4.1 Fenchel Conjugate Functions 74
4.2 Subdifferentials and Superdifferentials of Extended-value Functions 79
4.3 Applications of the Duality 94
5 Lagrange Duality Theory 116
5.1 Frenchel–Rockafellar Duality in Optimization 116
5.2 Lagrange Duality 125
5.3 Minimax Duality 143
5.4 Duality and Parametric Variational Problems 164
Part II General Results and Concepts on Robust and Optimal Control Theory for Evolutive Systems 177
6 Studied Systems and General Results 178
6.1 Hypotheses and Properties 178
6.2 Evolution Problems, Existence and Stability Results 181
6.3 Regularity Results 186
6.4 Examples of Operators and Spaces 192
7 Optimal Control Problems 198
7.1 Introduction 198
7.2 Basic Framework 199
7.3 Linear Control Problems 202
7.4 Examples of Controls and Observations 208
7.5 Parameter Estimations and Bilinear Control Problems 217
7.6 Non-linear Control for Non-linear Evolutive PDE Problems 223
8 Stabilization and Robust Control Problem 241
8.1 Motivation and Objectives 241
8.2 Basic Framework 243
8.3 Linear Robust Control Problems 246
8.4 Examples of Controls, Disturbances and Observations 254
8.5 Bilinear-type Robust Control Problems 267
8.6 Non-linear Robust Control for Non-linear Evolutive Problems 280
8.7 Non-linear Time-varying Delay Systems 310
9 Remarks on Numerical Techniques 332
9.1 Introduction and Studied Problem 332
9.2 Continuous Case 334
9.3 Discrete Problem 341
Part III Applications in the Biological and Physical Sciences: Modeling and Stabilization 348
10 Vortex Dynamics in Superconductors and Ginzburg–Landau-type Models 351
10.1 Introduction 351
10.2 Existence and Uniqueness of the Solution of the MTDGL Model 357
10.3 The Perturbation Problem 358
10.4 Differentiability of the Operator Solution 360
10.5 Robust Control Problems 362
11 Multi-scale Modeling of Alloy Solidification and Phase-field Model 381
11.1 Introduction 382
11.2 Existence, Uniqueness and a Maximum Principle 388
11.3 The Perturbation Problem 390
11.4 Differentiability of the Operator Solution 392
11.5 Robust Control Problems 394
12 Large-scale Ocean in the Climate System 406
12.1 Introduction and Formulation of the Problem 406
12.2 The Perturbation Problem 411
12.3 Robust Control Problems 421
12.4 Primitive Ocean Equations with Vertical Viscosity 429
13 Heat Transfer Laws on Temperature Distribution in Biological Tissues 437
13.1 Introduction 437
13.2 The State System 442
13.3 The Perturbation Problem 447
13.4 Robust Control Problems 449
13.5 Other Situations 455
14 Lotka–Volterra-type Systems with Logistic Time-varying Delays 460
14.1 Introduction and Mathematical Setting 460
14.2 Existence and Uniqueness of the Solution 463
14.3 The Perturbation Problem 468
14.4 Robust Control Problems 469
14.5 Other Situations 477
15 Other Systems 482
15.1 Micropolar Fluids and Blood Pressure 482
15.2 Semiconductor Melt Flow in Crystal Growth 487
References 491
Index 506
Erscheint lt. Verlag | 17.8.2008 |
---|---|
Reihe/Serie | Communications and Control Engineering | Communications and Control Engineering |
Zusatzinfo | XXII, 502 p. 3 illus. |
Verlagsort | London |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Naturwissenschaften ► Biologie | |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | Binary Alloy • Biology • Control • Control Theory • Evolution • fluid mechanics • Large-scale Ocean • Life Sciences • Lot • Materials Science • Minimax control • optimal control • Optimization • Partial differential equations • PDE • Physical Sciences • Robust Control • Sobolev spaces • Stabilization • superconductors • Temperature • tissue |
ISBN-10 | 1-84800-344-7 / 1848003447 |
ISBN-13 | 978-1-84800-344-6 / 9781848003446 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 6,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich