Applications of Linear and Nonlinear Models

Fixed Effects, Random Effects, and Total Least Squares
Buch | Hardcover
XXI, 1016 Seiten
2012 | 2012
Springer Berlin (Verlag)
978-3-642-22240-5 (ISBN)
299,59 inkl. MwSt
Zu diesem Artikel existiert eine Nachauflage
lt;p>Here we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view as well as a stochastic one. For example, there is an equivalent lemma between a best, linear uniformly unbiased estimation (BLUUE) in a Gauss-Markov model and a least squares solution (LESS) in a system of linear equations. While BLUUE is a stochastic regression model, LESS is an algebraic solution. In the first six chapters we concentrate on underdetermined and overdeterimined linear systems as well as systems with a datum defect. We review estimators/algebraic solutions of type MINOLESS, BLIMBE, BLUMBE, BLUUE, BIQUE, BLE, BIQUE and Total Least Squares. The highlight is the simultaneous determination of the first moment and the second central moment of a probability distribution in an inhomogeneous multilinear estimation by the so called E-D correspondence as well as its Bayes design. In addition, we discuss continuous networks versus discrete networks, use of Grassmann-Pluecker coordinates, criterion matrices of type Taylor-Karman as well as FUZZY sets. Chapter seven is a speciality in the treatment of an overdetermined system of nonlinear equations on curved manifolds. The von Mises-Fisher distribution is characteristic for circular or (hyper) spherical data. Our last chapter eight is devoted to probabilistic regression, the special Gauss-Markov model with random effects leading to estimators of type BLIP and VIP including Bayesian estimation.

A great part of the work is presented in four Appendices. Appendix A is a treatment, of tensor algebra, namely linear algebra, matrix algebra and multilinear algebra. Appendix B is devoted to sampling distributions and their use in terms of confidence intervals and confidence regions. Appendix C reviews the elementary notions of statistics, namely random events and stochastic processes. Appendix D introduces the basics of Groebner basis algebra, its careful definition, the Buchberger Algorithm, especially the C. F. Gauss combinatorial algorithm.

The first problem of algebraic regression.- The first problem of algebraic regression: the bias problem Special Gauss-Markov model with datum defects, LUMBE.- The second problem of algebraic regression Inconsistent system of linear observational equations.- The second problem of probabilistic regression Special Gauss-Markov model without datum defect.- The third problem of algebraic regression.- The third problem of probabilistic regression Special Gauss-Markov model without datum defect.- Overdetermined system of nonlinear equations on curved manifolds inconsistent system of directional observational equations.- The fourth problem of probabilistic regression Special Gauss-Markov model with random effects.- Appendix A-D.- References.- Index.

Erscheint lt. Verlag 5.8.2012
Zusatzinfo XXI, 1016 p. 111 illus., 8 illus. in color.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 1695 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Geophysik
Schlagworte BLUUE • Fixed effects • Geodesy • LESS • linear models • matrix theory • Nonlinear models • random effects • Regression (Statistik) • Statistics • Total least squares
ISBN-10 3-642-22240-4 / 3642222404
ISBN-13 978-3-642-22240-5 / 9783642222405
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
A Selection of Highlights

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2023)
De Gruyter (Verlag)
69,95