Percolation Theory and Ergodic Theory of Infinite Particle Systems
Springer-Verlag New York Inc.
978-0-387-96537-6 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
There is a certain similarity and overlap hetween the methods used in these two areas and, not surprisingly, they tend to attract the same probabilists. It seemed a good idea to organize a workshop on "Percolation Theory and Ergodic Theory of Infinite Particle Systems" in the framework of the special probahility year at the Institute for Mathematics and its Applications in 1985-86. Such a workshop, dealing largely with rigorous results, was indeed held in February 1986.
Rapid Convergence to Equilibrium of Stochastic Ising Models in the Dobrushin Shlosman Regime.- Uniqueness of the Infinite Cluster and Related Results in Percolation.- Survival of Cyclical Particle Systems.- Expansions in Statistical Mechanics as Part of the Theory of Partial Differential Equations.- The Mean Field Bound for the Order Parameter of Bernoulli Percolation.- Recent Results for the Stepping Stone Model.- Stochastic Growth Models.- Random Walks and Diffusions on Fractals.- The Behavior of Processes with Statistical Mechanical Properties.- Stiff Chains and Levy Flight: Two Self Avoiding Walk Models and the Uses of Their Statistical Mechanical Representations.- One Dimensional Stochastic Ising Models.- A Scaling Relation at Criticality for 2D-Percolation.- Reversible Growth Models on Zd: Some Examples.- Inequalities for ? and Related Critical Exponents in Short and Long Range Percolation.- A New Look at Contact Processes in Several Dimensions.- Fractal and Multifractal Approaches to Percolation: Some Exact and No-So-Exact Results.- Surface Simulations for Large Eden Clusters.- Duality for k-Degree Percolation on the Square Lattice.
Erscheint lt. Verlag | 13.5.1987 |
---|---|
Reihe/Serie | The IMA Volumes in Mathematics and its Applications ; 8 |
Zusatzinfo | 58 black & white illustrations, biography |
Verlagsort | New York, NY |
Sprache | englisch |
Gewicht | 630 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
ISBN-10 | 0-387-96537-8 / 0387965378 |
ISBN-13 | 978-0-387-96537-6 / 9780387965376 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich