An Introduction to Enumeration

Buch | Softcover
232 Seiten
2011
Springer London Ltd (Verlag)
978-0-85729-599-6 (ISBN)

Lese- und Medienproben

An Introduction to Enumeration - Alan Camina, Barry Lewis
37,44 inkl. MwSt
Introduction to Enumeration provides a comprehensive and practical introduction to this subject giving a clear account of fundamental results and a thorough grounding in the use of powerful techniques and tools.Two major themes run in parallel through the book, generating functions and group theory.
Written for students taking a second or third year undergraduate course in mathematics or computer science, this book is the ideal companion to a course in enumeration. Enumeration is a branch of combinatorics where the fundamental subject matter is numerous methods of pattern formation and counting. Introduction to Enumeration provides a comprehensive and practical introduction to this subject giving a clear account of fundamental results and a thorough grounding in the use of powerful techniques and tools.

Two major themes run in parallel through the book,  generating functions and group theory. The former theme takes enumerative sequences and then uses analytic tools to discover how they are made up. Group theory provides a concise introduction to groups and illustrates how the theory can be used  to count the number of symmetries a particular object has. These enrich and extend basic group ideas and techniques.

The authors present their material through examples that are carefully chosen to establish key results in a natural setting. The aim is to progressively build fundamental theorems and techniques. This development is interspersed with exercises that consolidate ideas and build confidence. Some exercises are linked to particular sections while others range across a complete chapter. Throughout, there is an attempt to present key enumerative ideas in a graphic way, using diagrams to make them immediately accessible. The development assumes some basic group theory, a familiarity with analytic functions and their power series expansion along with  some basic linear algebra.

"I have adopted your text "An introduction to enumeration" for my undergraduate combinatorics course. Overall, it is wonderful...I like how your book actually teaches something, beyond a loose tour of combinatorics that many other books offer. The ability to fluidly go back and forth between recurrences and generating functions, that sort of thing...It trades the broadest focus for specific techniques, in that way reminding me what's fun in say, an ODE course. My students actually learn something they couldn't do before, it makes them feel smart so they like the course " (Prof Dave Bayer, Barnard College, NY, USA)

What Is Enumeration?.- Generating Functions Count.- Working with Generating Functions.- Permutation Groups.- Matrices, Sequences and Sums.- Group Actions and Counting.- Exponential Generating Functions.- Graphs.- partitions and Paths.

Reihe/Serie Springer Undergraduate Mathematics Series
Zusatzinfo 62 Illustrations, black and white; XII, 232 p. 62 illus.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
Schlagworte Counting • Enumeration • Generating functions • Group actions • groups
ISBN-10 0-85729-599-3 / 0857295993
ISBN-13 978-0-85729-599-6 / 9780857295996
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Numbers and Counting, Groups, Graphs, Orders and Lattices

von Volker Diekert; Manfred Kufleitner; Gerhard Rosenberger …

Buch | Softcover (2023)
De Gruyter (Verlag)
64,95