
Lobachevski Illuminated
Mathematical Association of America (Verlag)
978-0-88385-573-7 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Lobachevski Illuminated provides a historical introduction to non-Euclidean geometry. Lobachevski's trailblazing explorations of non-Euclidean geometry constitute a crucial episode in the history of mathematics, but they were not widely recognized as such until after his death. Within these pages, readers will be guided step-by-step, through a new translation of Lobachevski's groundbreaking book, The Theory of Parallels. Extensive commentary situates Lobachevski's work in its mathematical, historical and philosophical context, thus granting readers a vision of the mysteries and beautiful world of non-Euclidean geometry as seen through the eyes of one of its discoverers. Although Lobachevski's 170-year-old text is challenging to read on its own, Seth Braver's carefully arranged 'illuminations' render this classic accessible to modern readers (student, professional mathematician or layman).
Seth Braver teaches mathematics at South Puget Sound Community College in Olympia, Washington.
Introduction; Note to the reader; 1. Theory of parallels - Lobachevski's introduction; 2. Theory of parallels - preliminary theorems (1-15); 3. Theory of parallels 16: the definition of parallelism; 4. Theory of parallels 17: parallelism is well-defined; 5. Theory of parallels 18: parallelism is symmetric; 6. Theory of parallels 19: the Saccheri–Legendre theorem; 7. Theory of parallels 20: the Three Musketeers theorem; 8. Theory of parallels 21: a little lemma; 9. Theory of parallels 22: common perpendiculars; 10. Theory of parallels 23: the Pi function; 11. Theory of parallels 24: Convergence of parallels; 12. Theory of parallels 25: parallelism is transitive; 13. Theory of parallels 26: spherical triangles; 14. Theory of parallels 27: solid angles; 15. Theory of parallels 28: the Prism theorem; 16. Theory of parallels 29: circumcircles or lack thereof (Part I); 17. Theory of parallels 30: circumcircles or lack thereof (Part II); 18. Theory of parallels 31: the horocycle defined; 19. Theory of parallels 32: the horocycle as a limit circle; 20. Theory of parallels 33: concentric horocycles; 21. Theory of parallels 34: the horosphere; 22. Theory of parallels 35: spherical trigonometry; 23. Theory of parallels 36: the fundamental formula; 24. Theory of parallels 37: plane trigonometry; Bibliography.
Reihe/Serie | Spectrum |
---|---|
Verlagsort | Washington |
Sprache | englisch |
Maße | 174 x 254 mm |
Gewicht | 450 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Mathematik / Informatik ► Mathematik ► Geschichte der Mathematik | |
ISBN-10 | 0-88385-573-9 / 0883855739 |
ISBN-13 | 978-0-88385-573-7 / 9780883855737 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich