Constraint-Handling in Evolutionary Optimization -

Constraint-Handling in Evolutionary Optimization

Efrén Mezura-Montes (Herausgeber)

Buch | Softcover
XV, 264 Seiten
2010 | 1. Softcover reprint of hardcover 1st ed. 2009
Springer Berlin (Verlag)
978-3-642-10155-7 (ISBN)
160,49 inkl. MwSt
This book is the result of a special session on constraint-handling techniques used in evolutionary algorithms within the Congress on Evolutionary Computation (CEC) in 2007. It presents recent research in constraint-handling in evolutionary optimization.

An efficient and adequate constraint-handling technique is a key element in the design of competitive evolutionary algorithms to solve complex optimization problems. This edited book presents a collection of recent advances in nature-inspired techniques for constrained numerical optimization. The book covers six main topics: swarm-intelligence-based approaches, studies in differential evolution, evolutionary multiobjective constrained optimization, hybrid approaches, real-world applications and the recent use of the artificial immune system in constrained optimization. Within the chapters, the reader will find different studies about specialized subjects, such as: special mechanisms to focus the search on the boundaries of the feasible region, the relevance of infeasible solutions in the search process, parameter control in constrained optimization, the combination of mathematical programming techniques and evolutionary algorithms in constrained search spaces and the adaptation of novel nature-inspired algorithms for numerical optimization with constraints.

"Constraint-Handling in Evolutionary Optimization" is an important reference for researchers, practitioners and students in disciplines such as optimization, natural computing, operations research, engineering and computer science.

Continuous Constrained Optimization with Dynamic Tolerance Using the COPSO Algorithm.- Boundary Search for Constrained Numerical Optimization Problems.- Solving Difficult Constrained Optimization Problems by the ? Constrained Differential Evolution with Gradient-Based Mutation.- Constrained Real-Parameter Optimization with ? -Self-Adaptive Differential Evolution.- Self-adaptive and Deterministic Parameter Control in Differential Evolution for Constrained Optimization.- An Adaptive Penalty Function for Handling Constraint in Multi-objective Evolutionary Optimization.- Infeasibility Driven Evolutionary Algorithm for Constrained Optimization.- On GA-AIS Hybrids for Constrained Optimization Problems in Engineering.- Constrained Optimization Based on Quadratic Approximations in Genetic Algorithms.- Constraint-Handling in Evolutionary Aerodynamic Design.- Handling Constraints in Global Optimization Using Artificial Immune Systems: A Survey.

Erscheint lt. Verlag 28.10.2010
Reihe/Serie Studies in Computational Intelligence
Zusatzinfo XV, 264 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 425 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Informatik Weitere Themen CAD-Programme
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte algorithm • algorithms • Artificial Intelligence • Computational Intelligence • Constraint-Handling • evolutionary algorithm • evolutionary computation • evolutionary optimization • Genetic algorithms • Heuristics • Intelligence • Multi-Objective Optimization • Mutation • Operator • Optimization
ISBN-10 3-642-10155-0 / 3642101550
ISBN-13 978-3-642-10155-7 / 9783642101557
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00