Handbook of Statistical Systems Biology
John Wiley & Sons Inc (Verlag)
978-0-470-71086-9 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Provides a comprehensive account of inference techniques in systems biology.
Introduces classical and Bayesian statistical methods for complex systems.
Explores networks and graphical modeling as well as a wide range of statistical models for dynamical systems.
Discusses various applications for statistical systems biology, such as gene regulation and signal transduction.
Features statistical data analysis on numerous technologies, including metabolic and transcriptomic technologies.
Presents an in-depth presentation of reverse engineering approaches.
Provides colour illustrations to explain key concepts.
This handbook will be a key resource for researchers practising systems biology, and those requiring a comprehensive overview of this important field.
Michael Stumpf, Theoretical Systems Biology at Imperial College London David Balding, Statistical Genetics in the Institute of Genetics at University College London Mark Girolami, Department of Computing Science and the Department of Statistics
Chapter 1 Two challenges of systems biology. Chapter 2 Introduction to Statistical Methods for Complex Systems.
Chapter 3 Bayesian Inference and Computation.
Chapter 4 Data Integration: Towards Understanding Biological Complexity.
Chapter 5 Control Engineering Approaches to Reverse Engineering Biomolecular Approaches.
Chapter 6 Algebraic Statistics and Methods in Systems Biology.
B. Technology-based Chapters.
Chapter 7 Transcriptomic Technologies and Statistical Data Analysis.
Chapter 8 Statistical Data Analysis in Metabolomics.
Chaper 9 Imaging and Single-Cell Measurement Technologies.
Chapter 10 Protein Interaction Networks and Their Statistical Analysis.
C. Networks and Graphical Models.
Chapter 11 Introduction to Graphical Modelling.
Chapter 12 Recovering Genetic Network from Continuous Data with Dynamic Bayesian Networks.
Chapter 13 Advanced Applications of Bayesian Networks in Systems Biology.
Chapter 14 Random Graph Models and Their Application to Protein-Protein Interaction Networks.
Chapter 15 Modelling Biological Networks Via Tailored Random Graphs.
D. Dynamical Systems.
Chapter 16 Nonlinear Dynamics: a Brief Introduction.
Chapter 17 Qualitative Inference for Dynamical Systems.
Chapter 18 Stochastic Dynamical Systems.
Chapter 19 State-Space models.
Chapter 20 Model Identification by Utilizing Likelihood-Based Methods.
E. Application Areas.
Chapter 21 Inference of Signalling Pathway Models.
Chapter 22 Modelling Transcription Factor Activity.
Chapter 23 Host-Pathogen Systems Biology.
Chapter 24 Statistical Metabolomics: Bayesian Challenges in the Analysis of Metabolomic Data.
Chapter 25 Systems Biology of microRNA.
Erscheint lt. Verlag | 21.10.2011 |
---|---|
Verlagsort | New York |
Sprache | englisch |
Maße | 196 x 254 mm |
Gewicht | 1297 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Studium ► 2. Studienabschnitt (Klinik) ► Humangenetik | |
Studium ► Querschnittsbereiche ► Epidemiologie / Med. Biometrie | |
ISBN-10 | 0-470-71086-1 / 0470710861 |
ISBN-13 | 978-0-470-71086-9 / 9780470710869 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich