Stochastische Methoden
Springer Berlin (Verlag)
978-3-540-57792-8 (ISBN)
I. Diskrete Wahrscheinlichkeitsräume.- 1. Einführung, Beispiele.- 2. Ergebnisraum, Ereignisse, Wahrscheinlichkeitsverteilung.- 3. Gleichverteilung in endlichen Ergebnisräumen.- 4. Elementare Kombinatorik.- 5. Hypergeometrische Verteilung.- 6. Zufallselemente.- 7. Aufgaben.- II. Drei Grundverfahren der mathematischen Statistik.- 1. Das Modell der elementaren Stichprobentheorie.- 2. Schätzung.- 3. Konfidenzbereich.- 4. Test.- 5. Fisher's exakter Test.- 6. Aufgaben.- III. Bedingte Wahrscheinlichkeit, Unabhängigkeit.- 1. Bedingte Wahrscheinlichkeit.- 2. Ein wahrscheinlichkeitstheoretisches Modell in der Informationstheorie.- 3. Unabhängige Ereignisse.- 4. Unabhängige Zufallsvariable.- 5. Aufgaben.- IV. Momente.- 1. Erwartungswert, bedingter Erwartungswert.- 2. Varianz, Korrelation: L2Methoden.- 3. Verteilungen in {0, 1, 2,...|.- 4. Tschebyscheffsche Ungleichung und schwaches Gesetz der großen Zahlen.- 5. Aufgaben.- V. Statistische Inferenz über unbekannte Wahrscheinlichkeiten.- 1. Inferenz über eine Wahrscheinlichkeit.- 2. Inferenz über eine diskrete Verteilung.- 3. Aufgaben.- VI. Grenzwertsätze.- 1. Stirlingsche Formel.- 2. Approximation der Binomialverteilung durch die Normalverteilung: der Grenzwertsatz von de Moivre-Laplace.- 3. Approximation der Binomialverteilung durch die Poissonsche Verteilung: der Poissonsche Grenzwertsatz.- 4. Aufgaben.- VII. Allgemeine Wahrscheinlichkeitstheorie.- 1. Allgemeiner Wahrscheinlichkeitsraum.- 2. Zufallsvariable.- 3. Unabhängigkeit.- 4. Momente.- 5. Normalverteilung, ?2-Verteilung, F-Verteilung, t-Verteilung.- 6. Mehrdimensionale Normalverteilung.- 7. Aufgaben.- VIII. Statistik normalverteilter Zufallsvariablen.- 1. Inferenz über die Erwartung bei bekannter Varianz.- 2. Inferenz über die Varianz bei bekannterErwartung.- 3. Inferenz über die Erwartung und die Varianz, wenn beide unbekannt sind.- 4. Aufgaben.- IX. Nichtparametrische Statistik.- 1. Ordnungs- und Rangstatistik.- 2. Permutationsinvariante Verfahren.- 3. Rangmethoden: ein Zweistichprobenproblem.- 4. Aufgaben.- X. Regressions- und Varianzanalyse.- 1. Regressionsanalyse.- 2. Varianzanalyse.- 3. Aufgaben.- XI. Simulation.- 1. Simulation einer Zufallsvariablen.- 2. Realisierung von Stichproben.- 3. Simulation von Prozessen.- 4. Aufgaben.- Tafeln.- 1. Zufallsziffern.- 2. Die kumulative Standard-Normalverteilung.- Literatur.
Erscheint lt. Verlag | 28.11.1994 |
---|---|
Reihe/Serie | Springer-Lehrbuch |
Zusatzinfo | XI, 243 S. 1 Abb. |
Verlagsort | Berlin |
Sprache | deutsch |
Maße | 155 x 235 mm |
Gewicht | 395 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | bedingte Wahrscheinlichkeit • Binomialverteilung • Korrelation • Normalverteilung • Parametrische Statistik • Regressionsanalyse • Statistik • Stochastik • Varianz • Varianzanalyse • Wahrscheinlichkeitsraum • Wahrscheinlichkeitsrechnung • Wahrscheinlichkeitstheorie • Wahrscheinlichkeitsverteilung • Zufallsvariable |
ISBN-10 | 3-540-57792-0 / 3540577920 |
ISBN-13 | 978-3-540-57792-8 / 9783540577928 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich