The Riemann Zeta-Function
Seiten
1992
|
1. Reprint 2011
De Gruyter (Verlag)
978-3-11-013170-3 (ISBN)
De Gruyter (Verlag)
978-3-11-013170-3 (ISBN)
No detailed description available for "The Riemann Zeta-Function".
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
"[...] the scope of this well-written book is by no means restricted to the Riemann zeta-function. It spans the range successfully from elementary theory to topics of recent and current research." Mathematical Reviews
Erscheint lt. Verlag | 1.8.1992 |
---|---|
Reihe/Serie | De Gruyter Expositions in Mathematics ; 5 |
Übersetzer | Neal Koblitz |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 155 x 230 mm |
Gewicht | 795 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Addition • Algebra • Applied mathematics • Character • Community • Development • Dynamical Systems • finite group • fuessel • Funciones Zeta • Function • Functions • Functions, Zeta • Georg • German • Germany • Goeschen • Interest • JOACH • knot theory • Lie algebra • Mantis • Mathematics • Methods • New York • Planning • present • Prime number • Riemann • Riemannsche Zetafunktion • Riemannsche Zeta-Funktion • Russia • Russian • Science • Selberg trace formula • Subject • Surface • Surfaces • University • Volume • Zeta • Zetafunktion |
ISBN-10 | 3-11-013170-6 / 3110131706 |
ISBN-13 | 978-3-11-013170-3 / 9783110131703 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich