Nonpositive Curvature: Geometric and Analytic Aspects - Jürgen Jost

Nonpositive Curvature: Geometric and Analytic Aspects

(Autor)

Buch | Softcover
VIII, 112 Seiten
1997 | 1997
Springer Basel (Verlag)
978-3-7643-5736-8 (ISBN)
53,49 inkl. MwSt
This book discusses various geometric and analytic aspects of nonpositive curvature, starting with a discussion of Riemannian examples and rigidity theorems. It then treats generalized notions of nonpositive curvature in metric geometry in the sense of Alexandrov and Busemann, as well as the theory of harmonic maps with values in such spaces.
It is intended for researchers and graduate students in Riemannian and metric geometry as well as calculus of variations.
The present book contains the lecture notes from a "Nachdiplomvorlesung", a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts.

1 Introduction.- 1.1 Examples of Riemannian manifolds of negative or nonpositive sectional curvature.- 1.2 Mordell and Shafarevitch type problems.- 1.3 Geometric superrigidity.- 2 Spaces of nonpositive curvature.- 2.1 Local properties of Riemannian manifolds of nonpositive sectional curvature.- 2.2 Nonpositive curvature in the sense of Busemann.- 2.3 Nonpositive curvature in the sense of Alexandrov.- 3 Convex functions and centers of mass.- 3.1 Minimizers of convex functions.- 3.2 Centers of mass.- 3.3 Convex hulls.- 4 Generalized harmonic maps.- 4.1 The definition of generalized harmonic maps.- 4.2 Minimizers of generalized energy functional.- 5 Bochner-Matsushima type identities for harmonic maps and rigidity theorems.- 5.1 The Bochner formula for harmonic one-forms and harmonic maps.- 5.2 A Matsushima type formula for harmonic maps.- 5.3 Geometrie superrigidity.

"Recollects some basic properties as well as some fairly advanced results [which] is done with a spirit that allows one to understand that, even though the study of such manifolds has important differences from the flat case, some techniques come from the very elementary Euclidean geometry."

--Mathematical Reviews

Erscheint lt. Verlag 1.5.1997
Reihe/Serie Lectures in Mathematics. ETH Zürich
Zusatzinfo VIII, 112 p. 3 illus.
Verlagsort Basel
Sprache englisch
Gewicht 242 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Calculus • calculus of variation • Curvature • Geometry • Hardcover, Softcover / Mathematik/Geometrie • HC/Mathematik/Geometrie • Krümmung • manifold • Variationsrechnung
ISBN-10 3-7643-5736-3 / 3764357363
ISBN-13 978-3-7643-5736-8 / 9783764357368
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95