Problems and Theorems in Classical Set Theory - Peter Komjath, Vilmos Totik

Problems and Theorems in Classical Set Theory

Buch | Softcover
516 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2006
Springer-Verlag New York Inc.
978-1-4419-2140-6 (ISBN)
53,49 inkl. MwSt
Although the ?rst decades of the 20th century saw some strong debates on set theory and the foundation of mathematics, afterwards set theory has turned into a solid branch of mathematics, indeed, so solid, that it serves as the foundation of the whole building of mathematics. Later generations, honest to Hilbert’s dictum, “No one can chase us out of the paradise that Cantor has created for us” proved countless deep and interesting theorems and also applied the methods of set theory to various problems in algebra, topology, in?nitary combinatorics, and real analysis. The invention of forcing produced a powerful, technically sophisticated tool for solving unsolvable problems. Still, most results of the pre-Cohen era can be digested with just the knowledge of a commonsense introduction to the topic. And it is a worthy e?ort, here we refer not just to usefulness, but, ?rst and foremost, to mathematical beauty. In this volume we o?er a collection of various problems in set theory. Most of classical set theory is covered, classical in the sense that independence methods are not used, but classical also in the sense that most results come fromtheperiod,say,1920–1970.Manyproblemsarealsorelatedtoother?elds of mathematics such as algebra, combinatorics, topology, and real analysis. We do not concentrate on the axiomatic framework, although some - pects, such as the axiom of foundation or the role ˆ of the axiom of choice, are elaborated.
   

Problems.- Operations on sets.- Countability.- Equivalence.- Continuum.- Sets of reals and real functions.- Ordered sets.- Order types.- Ordinals.- Ordinal arithmetic.- Cardinals.- Partially ordered sets.- Transfinite enumeration.- Euclidean spaces.- Zorn’s lemma.- Hamel bases.- The continuum hypothesis.- Ultrafilters on ?.- Families of sets.- The Banach-Tarski paradox.- Stationary sets in ?1.- Stationary sets in larger cardinals.- Canonical functions.- Infinite graphs.- Partition relations.- ?-systems.- Set mappings.- Trees.- The measure problem.- Stationary sets in [?]^- The Banach-Tarski paradox.- Stationary sets in ?1.- Stationary sets in larger cardinals.- Canonical functions.- Infinite graphs.- Partition relations.- ?-systems.- Set mappings.- Trees.- The measure problem.- Stationary sets in [?]^

Erscheint lt. Verlag 24.11.2010
Reihe/Serie Problem Books in Mathematics
Zusatzinfo XII, 516 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Graphentheorie
Mathematik / Informatik Mathematik Logik / Mengenlehre
ISBN-10 1-4419-2140-0 / 1441921400
ISBN-13 978-1-4419-2140-6 / 9781441921406
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich