Elements of Computational Statistics - James E. Gentle

Elements of Computational Statistics

(Autor)

Buch | Softcover
420 Seiten
2010 | Softcover reprint of the original 1st ed. 2002
Springer-Verlag New York Inc.
978-1-4419-3024-8 (ISBN)
139,09 inkl. MwSt
In recent years developments in statistics have to a great extent gone hand in hand with developments in computing. Indeed, many of the recent advances in statistics have been dependent on advances in computer science and techn- ogy. Many of the currently interesting statistical methods are computationally intensive, eitherbecausetheyrequireverylargenumbersofnumericalcompu- tions or because they depend on visualization of many projections of the data. The class of statistical methods characterized by computational intensity and the supporting theory for such methods constitute a discipline called “com- tational statistics”. (Here, I am following Wegman, 1988, and distinguishing “computationalstatistics”from“statisticalcomputing”, whichwetaketomean “computational methods, including numerical analysis, for statisticians”.) The computationally-intensive methods of modern statistics rely heavily on the developments in statistical computing and numerical analysis generally. Computational statistics shares two hallmarks with other “computational” sciences, such as computational physics, computational biology, and so on. One is a characteristic of the methodology: it is computationally intensive. The other is the nature of the tools of discovery. Tools of the scienti?c method have generally been logical deduction (theory) and observation (experimentation). The computer, used to explore large numbers of scenarios, constitutes a new type of tool. Use of the computer to simulate alternatives and to present the research worker with information about these alternatives is a characteristic of thecomputationalsciences. Insomewaysthisusageisakintoexperimentation. The observations, however, are generated from an assumed model, and those simulated data are used toevaluate and study the model.

Methods of Computational Statistics.- Preliminaries.- Monte Carlo Methods for Inference.- Randomization and Data Partitioning.- Bootstrap Methods.- Tools for Identification of Structure in Data.- Estimation of Functions.- Graphical Methods in Computational Statistics.- Data Density and Structure.- Estimation of Probability Density Functions Using Parametric Models.- Nonparametric Estimation of Probability Density Functions.- Structure in Data.- Statistical Models of Dependencies.

Erscheint lt. Verlag 6.12.2010
Reihe/Serie Statistics and Computing
Zusatzinfo XVIII, 420 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4419-3024-8 / 1441930248
ISBN-13 978-1-4419-3024-8 / 9781441930248
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich