Statistical Analysis and Data Display - Richard M. Heiberger, Burt Holland

Statistical Analysis and Data Display

An Intermediate Course with Examples in S-Plus, R, and SAS
Buch | Softcover
730 Seiten
2010 | Softcover reprint of the original 1st ed. 2004
Springer-Verlag New York Inc.
978-1-4419-2320-2 (ISBN)
214,00 inkl. MwSt
1 Audience Students seeking master's degrees in applied statistics in the late 1960s and 1970s typically took a year-long sequence in statistical methods. Popular choices of the course text book in that period prior to the availability of high­ speed computing and graphics capability were those authored by Snedecor and Cochran, and Steel and Torrie. By 1980, the topical coverage in these classics failed to include a great many new and important elementary techniques in the data analyst's toolkit. In order to teach the statistical methods sequence with adequate coverage of topics, it became necessary to draw material from each of four or five text sources. Obviously, such a situation makes life difficult for both students and instructors. In addition, statistics students need to become proficient with at least one high-quality statistical software package. This book can serve as a standalone text for a contemporary year-long course in statistical methods at a level appropriate for statistics majors at the master's level or other quantitatively oriented disciplines at the doctoral level. The topics include both concepts and techniques developed many years ago and a variety of newer tools not commonly found in textbooks.

1 Introduction and Motivation.- 2 Data and Statistics.- 3 Statistics Concepts.- 4 Graphs.- 5 Introductory Inference.- 6 One-Way Analysis of Variance.- 7 Multiple Comparisons.- 8 Linear Regression by Least Squares.- 9 Multiple Regression—More Than One Predictor.- 10 Multiple Regression—Dummy Variables and Contrasts.- 11 Multiple Regression—Regression Diagnostics.- 12 Two-Way Analysis of Variance.- 13 Design of Experiments—Factorial Designs.- 14 Design of Experiments—Complex Designs.- 15 Bivariate Statistics—Discrete Data.- 16 Nonparametrics.- 17 Logistic Regression.- 18 Time Series Analysis.- A Software.- A.1 Statistical Software.- A.2 Text Editing Software.- A.2.1 Emacs.- A.2.2 Microsoft Word.- A.3 Word Processing Software.- A.3.2 Microsoft Word.- A.4 Graphics Display Software.- A.5 Operating Systems.- A.6 Mathematical Fonts.- A.7 Directory Structure.- A.7.1 HOME Directory.- A.7.2 HH Book Online Files.- B.1 Create Your Working Directory and Make the HH Library Available.- B.1.3 Windows and R.- B.1.6 Unix and R.- B.4 HH Library Functions.- B.5 Learning the S Language.- B.6 S Language Style.- C SAS.- C.1 Make the HH Library Available.- C.1.1 Windows.- C.1.2 Unix.- C.2 Using SAS with HH.- C.2.1 Reading HH Datasets.- C.2.2 Any Other Data Files.- C.2.3 ASCII Data Files with TAB Characters.- C.2.4 Windows and Unix EOL (End-of-Line) Conventions.- C.3 Macros.- C.4 Learning the SAS Language.- C.5 SAS Coding Conventions.- D Probability Distributions.- D.1.1 An Example Involving Calculations with the Binomial Distribution.- D.2 Noncentral Probability Distributions.- E Editors.- E.1 Working Style.- E.2 Typography.- E.3 Emacs and ESS.- E.3.1 ESS.- E.3.2 Mouse and Keyboard.- E.3.3 Learning Emacs.- E.3.4 Requirements.- E.4 Microsoft Word.- E.4.1 Learning Word.- E.4.2Requirements 6.- E.5 Microsoft Excel.- E.5.1 Database Management.- E.5.2 Organizing Calculations.- E.5.3 Excel as a Statistical Calculator.- E.6 Exhortations, Some of Which Are Writing Style.- E.6.1 Writing Style.- E.6.2 Programming Style and Common Errors.- E.6.3 Presentation of Results.- F Mathematics Preliminaries.- F.1 Algebra Review.- F.2 Elementary Differential Calculus.- F.3 An Application of Differential Calculus.- F.4 Topics in Matrix Algebra.- F.4.1 Elementary Operations.- F.4.2 Linear Independence.- F.4.3 Rank.- F.4.4 Quadratic Forms.- F.4.5 Orthogonal Transformations.- F.4.6 Orthogonal Basis.- F.4.8 Matrix Factorization—Cholesky.- F.4.9 Orthogonal Polynomials.- F.4.10 Projection Matrices.- F.4.11 Geometry ot Mlatrices.- F.4.12 Eigenvalues and Eigenvectors.- F.4.13 Singular Value Decomposition.- F.4.14 Generalized Inverse.- F.4.15 Solving Linear Equations.- F.5 Combinations and Permutations.- F.5.1 Factorial.- F.5.2 Permutations.- F.5.3 Combinations.- F.6 Exercises.- G Graphs Based on Cartesian Products.- G.1 Structured Sets of Graphs.- G.1.1 Cartesian Products.- G.1.2 Trellis Paradigm.- G.2 Scatterplot Matrices: splom and xysplom.- G.3 Cartesian Products of Sets of Functions.- G.4 Graphs Requiring Multiple Calls to xysplom.- G.5 Asymmetric Roles for the Row and Column Sets.- G.6 Rotated Plots.- G.7 Squared Residual Plots.- G.8 Alternate Presentations.- References.- List of Datasets.

Erscheint lt. Verlag 19.11.2010
Reihe/Serie Springer Texts in Statistics
Zusatzinfo XXIV, 730 p.
Verlagsort New York, NY
Sprache englisch
Maße 178 x 254 mm
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4419-2320-9 / 1441923209
ISBN-13 978-1-4419-2320-2 / 9781441923202
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Weg zur Datenanalyse

von Ludwig Fahrmeir; Christian Heumann; Rita Künstler …

Buch | Softcover (2024)
Springer Spektrum (Verlag)
49,99
Eine Einführung für Wirtschafts- und Sozialwissenschaftler

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
29,95