Introduction to the Geometry of Foliations, Part A
Foliations on Compact Surfaces, Fundamentals for Arbitrary Codimension, and Holonomy
Seiten
1986
|
2nd ed. 1986
Vieweg & Teubner (Verlag)
978-3-528-18501-5 (ISBN)
Vieweg & Teubner (Verlag)
978-3-528-18501-5 (ISBN)
Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pioneer work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and IV. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and otners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. ~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and cnaracteristic classes) on the one hand, and the qualitative or geometrie theory on the other. The present volume is the first part of a monograph on geometrie aspects of foliations. Our intention here is to present some fundamental concepts and results as weIl as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that tilis goal has been achieved.
Prof. Dr. Ulrich Hirsch ist geschäftsführender Gesellschafter der Ulrich Hirsch & Partner Unternehmensberater in Bonn.
Content.- Chatter I - Foliations on Compact Surfaces.- 1. Vector fields on surfaces.- 2. Foliation on surfaces.- 3. Construction of foliations.- 4. Classification of foliations on surfaces.- 5. Denjoy theory on the circle.- 6. Structural stability.- II - Fundamentals on Foliations.- 1. Foliated bundles.- 2. Foliated manifolds.- 3. Examples of foliated manlfolds.- III - Holonomy.- 1. Foliated micro bundles.- 2. Holonomy of leaves.- 3. Linear holonomy; Thurston's stability theorem.- Literature.- Glossary of notations.
Erscheint lt. Verlag | 1.1.1986 |
---|---|
Reihe/Serie | Aspects of Mathematics |
Zusatzinfo | XI, 236 p. |
Verlagsort | Wiesbaden |
Sprache | englisch |
Gewicht | 441 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Boundary element method • diffeomorphism • EXIST • Form • Group • Homotopy • homotopy theory • Localization • manifold • Proof • selection • Singularity • stability • Types • Vector field |
ISBN-10 | 3-528-18501-5 / 3528185015 |
ISBN-13 | 978-3-528-18501-5 / 9783528185015 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
54,95 €
how geometry rules the universe
Buch | Hardcover (2024)
Basic Books (Verlag)
31,15 €