Introduction to the Geometry of Foliations, Part A

Foliations on Compact Surfaces, Fundamentals for Arbitrary Codimension, and Holonomy

(Autor)

Buch | Softcover
XI, 236 Seiten
1986 | 2nd ed. 1986
Vieweg & Teubner (Verlag)
978-3-528-18501-5 (ISBN)

Lese- und Medienproben

Introduction to the Geometry of Foliations, Part A - Gilbert Hector
53,49 inkl. MwSt
Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pioneer work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and IV. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and otners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. ~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and cnaracteristic classes) on the one hand, and the qualitative or geometrie theory on the other. The present volume is the first part of a monograph on geometrie aspects of foliations. Our intention here is to present some fundamental concepts and results as weIl as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that tilis goal has been achieved.

Prof. Dr. Ulrich Hirsch ist geschäftsführender Gesellschafter der Ulrich Hirsch & Partner Unternehmensberater in Bonn.

Content.- Chatter I - Foliations on Compact Surfaces.- 1. Vector fields on surfaces.- 2. Foliation on surfaces.- 3. Construction of foliations.- 4. Classification of foliations on surfaces.- 5. Denjoy theory on the circle.- 6. Structural stability.- II - Fundamentals on Foliations.- 1. Foliated bundles.- 2. Foliated manifolds.- 3. Examples of foliated manlfolds.- III - Holonomy.- 1. Foliated micro bundles.- 2. Holonomy of leaves.- 3. Linear holonomy; Thurston's stability theorem.- Literature.- Glossary of notations.

Erscheint lt. Verlag 1.1.1986
Reihe/Serie Aspects of Mathematics
Zusatzinfo XI, 236 p.
Verlagsort Wiesbaden
Sprache englisch
Gewicht 441 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Boundary element method • diffeomorphism • EXIST • Form • Group • Homotopy • homotopy theory • Localization • manifold • Proof • selection • Singularity • stability • Types • Vector field
ISBN-10 3-528-18501-5 / 3528185015
ISBN-13 978-3-528-18501-5 / 9783528185015
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
how geometry rules the universe

von Shing-Tung Yau; Steve Nadis

Buch | Hardcover (2024)
Basic Books (Verlag)
31,15