Recurrence in Topological Dynamics - Ethan Akin

Recurrence in Topological Dynamics

Furstenberg Families and Ellis Actions

(Autor)

Buch | Softcover
266 Seiten
2010 | Softcover reprint of hardcover 1st ed. 1997
Springer-Verlag New York Inc.
978-1-4419-3272-3 (ISBN)
106,99 inkl. MwSt
That is, each return time set is a so-called syndetic subset ofT= the positive reals (continuous time system) or T = the positive integers (discrete time system). In particular, frequency is measured by membership in a family of subsets of the space modeling time, in this case the family of syndetic subsets of T.
In the long run of a dynamical system, after transient phenomena have passed away, what remains is recurrence. An orbit is recurrent when it returns repeatedly to each neighborhood of its initial position. We can sharpen the concept by insisting that the returns occur with at least some prescribed frequency. For example, an orbit lies in some minimal subset if and only if it returns almost periodically to each neighborhood of the initial point. That is, each return time set is a so-called syndetic subset ofT= the positive reals (continuous time system) or T = the positive integers (discrete time system). This is a prototype for many of the results in this book. In particular, frequency is measured by membership in a family of subsets of the space modeling time, in this case the family of syndetic subsets of T. In applying dynamics to combinatorial number theory, Furstenberg introduced a large number of such families. Our first task is to describe explicitly the calculus of families implicit in Furstenberg's original work and in the results which have proliferated since. There are general constructions on families, e. g. , the dual of a family and the product of families. Other natural constructions arise from a topology or group action on the underlying set. The foundations are laid, in perhaps tedious detail, in Chapter 2. The family machinery is then applied in Chapters 3 and 4 to describe family versions of recurrence, topological transitivity, distality and rigidity.

1. Monoid Actions.- 2. Furstenberg Families.- 3. Recurrence.- 4. Transitive and Central Systems.- 5. Compactifications.- 6. Ellis Semigroups and Ellis Actions.- 7. Semigroups and Families.- 8. Equicontinuity.- Appendix. Semicontinuous Relations and Almost Open Maps.- References.

Erscheint lt. Verlag 6.12.2010
Reihe/Serie University Series in Mathematics
Zusatzinfo X, 266 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 1-4419-3272-0 / 1441932720
ISBN-13 978-1-4419-3272-3 / 9781441932723
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95