Gromov’s Compactness Theorem for Pseudo-holomorphic Curves
Springer Basel (Verlag)
978-3-7643-5735-1 (ISBN)
I Preliminaries.- 1. Riemannian manifolds.- 2. Almost complex and symplectic manifolds.- 3. J-holomorphic maps.- 4. Riemann surfaces and hyperbolic geometry.- 5. Annuli.- II Estimates for area and first derivatives.- 1. Gromov’s Schwarz- and monotonicity lemma.- 2. Area of J-holomorphic maps.- 3. Isoperimetric inequalities for J-holomorphic maps.- 4. Proof of the Gromov-Schwarz lemma.- III Higher order derivatives.- 1. 1-jets of J-holomorphic maps.- 2. Removal of singularities.- 3. Converging sequences of J-holomorphic maps.- 4. Variable almost complex structures.- IV Hyperbolic surfaces.- 1. Hexagons.- 2. Building hyperbolic surfaces from pairs of pants.- 3. Pairs of pants decomposition.- 4. Thick-thin decomposition.- 5. Compactness properties of hyperbolic structures.- V The compactness theorem.- 1. Cusp curves.- 2. Proof of the compactness theorem.- 3. Bubbles.- VI The squeezing theorem.- 1. Discussion of the statement.- 2. Proof modulo existence result for pseudo-holomorphic curves.- 3. The analytical setup: A rough outline.- 4. The required existence result.- Appendix A The classical isoperimetric inequality.- References on pseudo-holomorphic curves.
Erscheint lt. Verlag | 1.5.1997 |
---|---|
Reihe/Serie | Progress in Mathematics |
Zusatzinfo | VIII, 135 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 386 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Geometry • Gromov, Mikhail • Hardcover, Softcover / Mathematik/Geometrie • HC/Mathematik/Geometrie • Holomorphe Funktion • manifold • Proof • Symplectic Geometry • Theorem |
ISBN-10 | 3-7643-5735-5 / 3764357355 |
ISBN-13 | 978-3-7643-5735-1 / 9783764357351 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich