Lineare Algebra

Eine anwendungsorientierte Einführung in die Geometrie, die Gleichungs- und Ungleichungstheorie, sowie die Proportionalitätsgesetze zum Gebrauch neben Vorlesungen
Buch | Softcover
XXV, 296 Seiten
1983
Springer Berlin (Verlag)
978-3-540-12477-1 (ISBN)

Lese- und Medienproben

Lineare Algebra - W. D. Beiglböck
54,99 inkl. MwSt
Vor die Wahl gestellt, zu einer sehr kurzen Einleitung, in der ich nur sagen wollte, dass dieses Buch den Inhalt meiner 1980/81 in Heidelberg gehaltenen Anfängervorlesung wiedergibt, zu greifen oder in einer vielleicht über Gebühr langen dem Leser den Aufbau des Werks und meine Auffassung von der Linearen Algebra vorzustellen, habe ich mich schliesslich für den zweiten Weg entschiedent. Obwohl es im logischen Ablauf keine Lücken lässt und auch keine Beweise überspringt oder unzulässig verkürzt, ist dieses Buch weniger zum Selbststudium als vielmehr als Begleiuext zu einer einführenden Vorlesung in die Lineare Algebra gedacht. Der Leserkreis wird vorwiegend aus Studienanfängern bestehen. Von diesen setze ich voraus, dass sie eine solide mathematische Vorausbildung an der Schule, vor allem im Hinblick auf die Beherrschung grundlegender Rechen- und Schlusstechniken sowie auf ein solides Beispielmaterial in der elementaren Geometrie, bekommen haben. Die an sich begrüssenswerte Experimentierfreudigkeit einer bis vor zwanzig Jahren im Ausprobieren zeitgemässer naturwissenschaftlicher Ausbildungs formen recht unerfahrenen Behörde hat leider dazu geführt, dass die Vorbildung der jetzt in die höheren Lehranstalten, insbesondere die Uni versitäten, eintretenden Studenten recht uneinheitlich erscheint. Es ist daher unbedingt zuzuraten, den Stoff der Grundvorlesungen nicht allein aus einem Buch, sondern möglichst mit Unterstützung eines Dozenten zu lernen; zumindest sollten die Bibliotheken, die in der Regel über eine gute Kollek tion elementarer Lehrbücher verfügen, intensiv genutzt werden.

1. Motivation.- 1.1. Die lineare Proportionalität.- 1.2. Das lineare Gleichungssystem.- 1.3. Die elementare Matrizenrechnung.- 1.4. Die Geometrie der Euklidischen Ebene.- 2. Lineare Räume.- 2.1. Die definierenden Axiome.- 2.2. Die lineare Unabhängigkeit.- 2.3. Der Gauss-Jordan Algorithmus.- 3. Die lineare Abbildung.- 3.1. Die grundlegenden Eigenschaften.- 3.2. Das Zusammensetzen linearer Abbildungen.- 3.3. Die Matrizenform linearer Abbildungen.- 4. Die linearen Gleichungen.- 4.1. Die Problemstellung.- 4.2. Das Lösen linearer Gleichungssysteme.- 4.3. Die Determinante.- 5. Die affine Geometrie.- 5.1. Die affine Mannigfaltigkeit.- 5.2. Die affine Abbildungsgeometrie.- 6. Die linearen Funktionale.- 6.1. Die Dualitätstheorie.- 6.2. Die linearen Ungleichungen.- 6.3. Zur Lösbarkeit linearer Ungleichungssysteme.- 7. Die metrischen Strukturen.- 7.1. Die metrische Dualitätstheorie.- 7.2. Die metrische Geometrie.- 7.3. Die Quadriken.- 8. Die Rolle der komplexen Zahlen.- 8.1. Die komplexe Lineare Algebra.- 8.2. Die komplexen Polynomfunktionen.- 9. Die Reduktionstheorie.- 9.1 Das Spektrum.- 9.2. Der Spektralsatz.- 9.3. Die Jordan-Zerlegung.- Anhänge.- A. Grundlegende algebraische Rechengesetze.- B. Die wichtigsten Grundbegriffe der Mengenabbildung.- C. Hilberts Axiomatik der Euklidischen Geometrie.

Erscheint lt. Verlag 1.7.1983
Zusatzinfo XXV, 296 S.
Verlagsort Berlin
Sprache deutsch
Maße 170 x 244 mm
Gewicht 548 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Schlagworte Algebra • Ebene • lineare Abbildung • Lineare Algebra • Lineare Unabhängigkeit • matrix theory • Matrizen
ISBN-10 3-540-12477-2 / 3540124772
ISBN-13 978-3-540-12477-1 / 9783540124771
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich