Unicity of Meromorphic Mappings -  Pei-Chu Hu,  Ping Li,  Chung-Chun Yang

Unicity of Meromorphic Mappings

Buch | Softcover
467 Seiten
2011
Springer-Verlag New York Inc.
978-1-4419-5243-1 (ISBN)
149,79 inkl. MwSt
For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for­ mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func­ tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur­ 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.

1 Nevanlinna theory.- 2 Uniqueness of meromorphic functions on ?.- 3 Uniqueness of meromorphic functions on ?m.- 4 Uniqueness of meromorphic mappings.- 5 Algebroid functions of several variables.- References.- Symbols.

Reihe/Serie Advances in Complex Analysis and Its Applications ; 1
Zusatzinfo IX, 467 p.
Verlagsort New York, NY
Sprache englisch
Maße 160 x 240 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4419-5243-8 / 1441952438
ISBN-13 978-1-4419-5243-1 / 9781441952431
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich