Unicity of Meromorphic Mappings
Seiten
2011
Springer-Verlag New York Inc.
978-1-4419-5243-1 (ISBN)
Springer-Verlag New York Inc.
978-1-4419-5243-1 (ISBN)
For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.
1 Nevanlinna theory.- 2 Uniqueness of meromorphic functions on ?.- 3 Uniqueness of meromorphic functions on ?m.- 4 Uniqueness of meromorphic mappings.- 5 Algebroid functions of several variables.- References.- Symbols.
Reihe/Serie | Advances in Complex Analysis and Its Applications ; 1 |
---|---|
Zusatzinfo | IX, 467 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 160 x 240 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
ISBN-10 | 1-4419-5243-8 / 1441952438 |
ISBN-13 | 978-1-4419-5243-1 / 9781441952431 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich