Applications of Fibonacci Numbers
Springer (Verlag)
978-90-481-8447-7 (ISBN)
This book contains nineteen papers from among the twenty-five papers presented at the Second International Conference on Fibonacci Numbers and Their Applications. These papers have been selected after a careful review by well known referee's in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers are their unifying bond. It is anticipated that this book will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. October 1987 The Editors Gerald E. Bergum South Dakota State University Brookings, South Dakota, U.S.A. Andreas N. Philippou University of Patras Patras, Greece Alwyn F. Horadam University of New England Armidale, N.S.W., Australia xiii THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERN A TIONAL COMMITTEE Bergum, G., Chairman Philippou, A. (Greece), Chairman Edgar, H., Co-chalrman Horadam, A. (Australia), Co-chalrman Bergum, G. (U.s.A.) Thoro, D. Kiss, P. (Hungary) Johnson, M. Long, C. (U.S.A.) Lange, L.
Fermat-Like Binomial Equations.- Recurrences Related to the Bessel Function.- Symmetric Recursive Sequences Mod M.- Primitive Divisors of Lucas Numbers.- A Congruence Relation for a Linear Recursive Sequence of Arbitrary Order.- Fibonacci Numbers and Groups.- A Triangular Array with Hexagon Property, Dual to Pascal’s Triangle.- Functions of the Kronecker Square of the Matrix Q.- Fibonacci Numbers of the Forms PX2 ± 1, PX3 ± 1, where P is Prime.- On the K-TH Order Linear Recurrence and Some Probability Applications.- On the Representation of Integral Sequences {Fn/d} and {Ln/d} as Sums of Fibonacci Numbers and as Sums of Lucas Numbers.- Primes Having an inComplete System of Residues for a Class of Second-Order Recurrences.- Covering the Integers with Linear Recurrences.- Recursive Theorems for Success Runs and Reliability of Consecutive-K-Out-of-N: F Systems.- Asveld’s Polynomials Pj(N).- More on the Problem of Diophantus.- On a Problem of Diophantus.- The Generalized Fibonacci Numbers {Cn}, Cn = Cn-1 + Cn-2 + K.- First Failures.
Erscheint lt. Verlag | 30.12.2010 |
---|---|
Zusatzinfo | XX, 217 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 160 x 240 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
ISBN-10 | 90-481-8447-9 / 9048184479 |
ISBN-13 | 978-90-481-8447-7 / 9789048184477 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich