Congruences for L-Functions
Seiten
2010
|
Softcover reprint of hardcover 1st ed. 2000
Springer (Verlag)
978-90-481-5490-6 (ISBN)
Springer (Verlag)
978-90-481-5490-6 (ISBN)
In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2· . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k < Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =:O(mod2n). eld o
I. Short Character Sums.- II. Class Number Congruences.- III. Congruences between the Orders of K2-Groups.- IV Congruences among the Values of 2-Adic L-Functions.- V. Applications of Zagier’s Formula (I).- VI. Applications of Zagier’s Formula (II).- Author Index.- List of symbols.
Erscheint lt. Verlag | 15.12.2010 |
---|---|
Reihe/Serie | Mathematics and Its Applications ; 511 |
Zusatzinfo | XII, 256 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 160 x 240 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 90-481-5490-1 / 9048154901 |
ISBN-13 | 978-90-481-5490-6 / 9789048154906 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €