Harmonic Analysis on Symmetric Spaces and Applications I - Audrey Terras

Harmonic Analysis on Symmetric Spaces and Applications I

(Autor)

Buch | Softcover
360 Seiten
1985 | Softcover reprint of the original 1st ed. 1985
Springer-Verlag New York Inc.
978-0-387-96159-0 (ISBN)
85,55 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Since its beginnings with Fourier (and as far back as the Babylonian astron omers), harmonic analysis has been developed with the goal of unraveling the mysteries of the physical world of quasars, brain tumors, and so forth, as well as the mysteries of the nonphysical, but no less concrete, world of prime numbers, diophantine equations, and zeta functions. Quoting Courant and Hilbert, in the preface to the first German edition of Methods of Mathematical Physics: "Recent trends and fashions have, however, weakened the connection between mathematics and physics. " Such trends are still in evidence, harmful though they may be. My main motivation in writing these notes has been a desire to counteract this tendency towards specialization and describe appli cations of harmonic analysis in such diverse areas as number theory (which happens to be my specialty), statistics, medicine, geophysics, and quantum physics. I remember being quite surprised to learn that the subject is useful. My graduate eduation was that of the 1960s. The standard mathematics graduate course proceeded from Definition 1. 1. 1 to Corollary 14. 5. 59, with no room in between for applications, motivation, history, or references to related work. My aim has been to write a set of notes for a very different sort of course.

for Volume I.- I Flat Space. Fourier Analysis on ?m.- 1.1 Distributions or Generalized Functions.- 1.2. Fourier Integrals.- 1.3. Fourier Series and the Poisson Summation Formula.- 1.4. Mellin Transforms, Epstein and Dedekind Zeta Functions.- II A Compact Symmetric Space—The Sphere.- 2.1. Spherical Harmonics.- 2.2. 0(3) and ?3. The Radon Transform.- III The Poincaré Upper Half-Plane.- 3.1. Hyperbolic Geometry.- 3.2. Harmonic Analysis on H.- 3.3. Fundamental Domains for Discrete Subgroups ? of G = SL(2,?).- 3.4. Automorphic Forms—Classical.- 3.5. Automorphic Forms—Not So Classical—Maass Waveforms.- 3.6. Automorphic Forms and Dirichlet Series. Hecke Theory and Generalizations.- 3.7. Harmonic Analysis on the Fundamental Domain. The Roelcke-Selberg Spectral Resolution of the Laplacian, and the Selberg Trace Formula.

Erscheint lt. Verlag 1.7.1985
Zusatzinfo 1, black & white illustrations
Verlagsort New York, NY
Sprache englisch
Maße 156 x 234 mm
Gewicht 545 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-387-96159-3 / 0387961593
ISBN-13 978-0-387-96159-0 / 9780387961590
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich