Geometry and Analysis on Manifolds

Proceedings of the 21st International Taniguchi Symposium held at Katata, Japan, Aug. 23-29 and the Conference held at Kyoto, Aug. 31 - Sep. 2, 1987

Toshikazu Sunada (Herausgeber)

Buch | Softcover
XII, 284 Seiten
1988 | 1988
Springer Berlin (Verlag)
978-3-540-50113-8 (ISBN)

Lese- und Medienproben

Geometry and Analysis on Manifolds -
37,40 inkl. MwSt
The Taniguchi Symposium on global analysis on manifolds focused mainly on the relationships between some geometric structures of manifolds and analysis, especially spectral analysis on noncompact manifolds. Included in the present volume are expanded versions of most of the invited lectures. In these original research articles, the reader will find up-to date accounts of the subject.

L2harmonic forms on complete Riemannian manifolds.- Ricci-flat Kähler metrics on affine algebraic manifolds.- On the multiplicy of the eigenvalues of the Laplacian.- Riemann surfaces of large genus and large ?1.- Cayley graphs and planar isospectral domains.- On the almost negatively curved 3-sphere.- Vanishing theorems for tensor powers of a positive vector bundle.- Decay of eigenfunctions on Riemannian manifolds.- Stability and negativity for tangent sheaves of minimal Kähler spaces.- An obstruction class and a representation of holomorphic automorphisms.- Tensorial ergodicity of geodesic flows.- Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature I.- Density theorems for closed orbits.- L2-Index and resonances.- Approximation of Green's function in a region with many obstacles.- Lower bounds of the essential spectrum of the Laplace-Beltrami operator and its application to complex geometry.- Fundamental groups and Laplacians.

Erscheint lt. Verlag 10.8.1988
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo XII, 284 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 417 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Calculus • Curvature • differential equation • eigenvalue • manifold • Minimum
ISBN-10 3-540-50113-4 / 3540501134
ISBN-13 978-3-540-50113-8 / 9783540501138
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich