Für diesen Artikel ist leider kein Bild verfügbar.

Path Integrals in Quantum Mechanics

Buch | Softcover
336 Seiten
2010
Oxford University Press (Verlag)
978-0-19-856675-5 (ISBN)
63,60 inkl. MwSt
Quantum field theory is hardly comprehensible without path integrals: the goal of this book is to introduce students to this topic within the context of ordinary quantum mechanics and non-relativistic many-body theory, before facing the problems associated with the more involved quantum field theory formalism.
The main goal of this work is to familiarize the reader with a tool, the path integral, that offers an alternative point of view on quantum mechanics, but more important, under a generalized form, has become the key to a deeper understanding of quantum field theory and its applications, which extend from particle physics to phase transitions or properties of quantum gases.
Path integrals are mathematical objects that can be considered as generalizations to an infinite number of variables, represented by paths, of usual integrals. They share the algebraic properties of usual integrals, but have new properties from the viewpoint of analysis.
Path integrals are powerful tools for the study of quantum mechanics, because they emphasize very explicitly the correspondence between classical and quantum mechanics.
Physical quantities are expressed as averages over all possible paths but, in the semi-classical limit, the leading contributions come from paths close to classical paths. Thus, path integrals lead to an intuitive understanding and simple calculations of physical quantities in the semi-classical limit. We will illustrate this observation with scattering processes, spectral properties or barrier penetration.
The formulation of quantum mechanics based on path integrals, if it seems mathematically more complicated than the usual formulation based on partial differential equations, is well adapted to systems with many degrees of freedom, where a formalism of Schrödinger type is much less useful. It allows a simple construction of a many-body theory both for bosons and fermions.

Professor Jean Zinn-Justin Head of Department, Dapnia, CEA/Saclay, France

QUANTUM MECHANICS: MINIMAL BACKGROUND

Erscheint lt. Verlag 22.7.2010
Reihe/Serie Oxford Graduate Texts
Zusatzinfo 20 b/w line illustrations
Verlagsort Oxford
Sprache englisch
Maße 168 x 241 mm
Gewicht 560 g
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Hochenergiephysik / Teilchenphysik
Naturwissenschaften Physik / Astronomie Quantenphysik
ISBN-10 0-19-856675-1 / 0198566751
ISBN-13 978-0-19-856675-5 / 9780198566755
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Siegfried Hunklinger; Christian Enss

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
89,95

von Rudolf Gross; Achim Marx

Buch | Hardcover (2022)
De Gruyter Oldenbourg (Verlag)
79,95
Festkörperphysik

von Gerhard Franz

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
89,95