Lindenmayer Systems, Fractals, and Plants
Seiten
1992
|
1st ed. 1989. 2nd printing 1992
Springer-Verlag New York Inc.
978-0-387-97092-9 (ISBN)
Springer-Verlag New York Inc.
978-0-387-97092-9 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
1-systems are a mathematical formalism which was proposed by Aristid 1indenmayer in 1968 as a foundation for an axiomatic theory of develop ment. The notion promptly attracted the attention of computer scientists, who investigated 1-systems from the viewpoint of formal language theory. This theoretical line of research was pursued very actively in the seventies, resulting in over one thousand publications. A different research direction was taken in 1984 by Alvy Ray Smith, who proposed 1-systems as a tool for synthesizing realistic images of plants and pointed out the relationship between 1-systems and the concept of fractals introduced by Benoit Mandel brot. The work by Smith inspired our studies of the application of 1-systems to computer graphics. Originally, we were interested in two problems: • Can 1-systems be used as a realistic model of plant species found in nature? • Can 1-systems be applied to generate images of a wide class of fractals? It turned out that both questions had affirmative answers. Subsequently we found that 1-systems could be applied to other areas, such as the generation of tilings, reproduction of a geometric art form from East India, and synthesis of musical scores based on an interpretation of fractals. This book collects our results related to the graphical applications of- systems. It is a corrected version of the notes which we prepared for the ACM SIGGRAPH '88 course on fractals.
Reihe/Serie | Lecture Notes in Biomathematics ; 79 |
---|---|
Co-Autor | Aristid Lindenmayer, F.D. Fracchia, K. Krithivasan |
Zusatzinfo | 142 Illustrations, black and white; V, 122 p. 142 illus. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 170 x 244 mm |
Gewicht | 250 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Grafik / Design |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Studium ► Querschnittsbereiche ► Epidemiologie / Med. Biometrie | |
Naturwissenschaften ► Biologie ► Botanik | |
ISBN-10 | 0-387-97092-4 / 0387970924 |
ISBN-13 | 978-0-387-97092-9 / 9780387970929 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
ein überfälliges Gespräch zu einer Pandemie, die nicht die letzte …
Buch | Hardcover (2024)
Ullstein Buchverlage
24,99 €