Understanding Digital Signal Processing - Richard Lyons

Understanding Digital Signal Processing

(Autor)

Buch | Hardcover
992 Seiten
2010 | 3rd edition
Pearson (Verlag)
978-0-13-702741-5 (ISBN)
145,40 inkl. MwSt
Amazon.com’s Top-Selling DSP Book for Seven Straight Years—Now Fully Updated!  

Understanding Digital Signal Processing, Third Edition, is quite simply the best resource for engineers and other technical professionals who want to master and apply today’s latest DSP techniques. Richard G. Lyons has updated and expanded his best-selling second edition to reflect the newest technologies, building on the exceptionally readable coverage that made it the favorite of DSP professionals worldwide. He has also added hands-on problems to every chapter, giving students even more of the practical experience they need to succeed.

 

Comprehensive in scope and clear in approach, this book achieves the perfect balance between theory and practice, keeps math at a tolerable level, and makes DSP exceptionally accessible to beginners without ever oversimplifying it. Readers can thoroughly grasp the basics and quickly move on to more sophisticated techniques.

 

This edition adds extensive new coverage of FIR and IIR filter analysis techniques, digital differentiators, integrators, and matched filters. Lyons has significantly updated and expanded his discussions of multirate processing techniques, which are crucial to modern wireless and satellite communications. He also presents nearly twice as many DSP Tricks as in the second edition—including techniques even seasoned DSP professionals may have overlooked.

 

Coverage includes



New homework problems that deepen your understanding and help you apply what you’ve learned
Practical, day-to-day DSP implementations and problem-solving throughout
Useful new guidance on generalized digital networks, including discrete differentiators, integrators, and matched filters
Clear descriptions of statistical measures of signals, variance reduction by averaging, and real-world signal-to-noise ratio (SNR) computation
A significantly expanded chapter on sample rate conversion (multirate systems) and associated filtering techniques
New guidance on implementing fast convolution, IIR filter scaling, and more
Enhanced coverage of analyzing digital filter behavior and performance for diverse communications and biomedical applications
Discrete sequences/systems, periodic sampling, DFT, FFT, finite/infinite impulse response filters, quadrature (I/Q) processing, discrete Hilbert transforms, binary number formats, and much more

Richard G. Lyons is a consulting Systems Engineer and lecturer with Besser Associates in Mountain View, California. He is author of the book "Understanding Digital Signal Processing", editor and contributor to the book "Streamlining Digital Signal Processing", and has authored numerous articles on DSP. Lyons has taught DSP at the University of California Santa Cruz Extension and recently received the IEEE Signal Processing Society's  2012 Educator of the Year award.

Preface      xv About the Author      xxiii

 

Chapter 1: Discrete Sequences and Systems      1

1.1 Discrete Sequences and their Notation   2

1.2 Signal Amplitude, Magnitude, Power   8

1.3 Signal Processing Operational Symbols   10

1.4 Introduction to Discrete Linear Time-Invariant Systems   12

1.5 Discrete Linear Systems   12

1.6 Time-Invariant Systems   17

1.7 The Commutative Property of Linear Time-Invariant Systems   18

1.8 Analyzing Linear Time-Invariant Systems   19

References   21

Chapter 1 Problems   23

 

Chapter 2: Periodic Sampling      33

2.1 Aliasing: Signal Ambiguity in the Frequency Domain   33

2.2 Sampling Lowpass Signals   38

2.3 Sampling Bandpass Signals   42

2.4 Practical Aspects of Bandpass Sampling   45

References   49

Chapter 2 Problems   50

 

Chapter 3: The Discrete Fourier Transform     59

3.1 Understanding the DFT Equation   60

3.2 DFT Symmetry   73

3.3 DFT Linearity   75

3.4 DFT Magnitudes   75

3.5 DFT Frequency Axis   77

3.6 DFT Shifting Theorem   77

3.7 Inverse DFT   80

3.8 DFT Leakage   81

3.9 Windows   89

3.10 DFT Scalloping Loss   96

3.11 DFT Resolution, Zero Padding, and Frequency-Domain Sampling   98

3.12 DFT Processing Gain   102

3.13 The DFT of Rectangular Functions   105

3.14 Interpreting the DFT Using the Discrete-Time Fourier Transform   120

References   124

Chapter 3 Problems   125

 

Chapter 4: The Fast Fourier Transform      135

4.1 Relationship of the FFT to the DFT 136

4.2 Hints on Using FFTs in Practice 137

4.3 Derivation of the Radix-2 FFT Algorithm 141

4.4 FFT Input/Output Data Index Bit Reversal 149

4.5 Radix-2 FFT Butterfly Structures 151

4.6 Alternate Single-Butterfly Structures 154

References 158

Chapter 4 Problems 160

 

Chapter 5: Finite Impulse Response Filters      169

5.1 An Introduction to Finite Impulse Response (FIR) Filters   170

5.2 Convolution in FIR Filters   175

5.3 Lowpass FIR Filter Design   186

5.4 Bandpass FIR Filter Design   201

5.5 Highpass FIR Filter Design   203

5.6 Parks-McClellan Exchange FIR Filter Design Method   204

5.7 Half-band FIR Filters   207

5.8 Phase Response of FIR Filters   209

5.9 A Generic Description of Discrete Convolution   214

5.10 Analyzing FIR Filters   226

References   235

Chapter 5 Problems   238

 

Chapter 6: Infinite Impulse Response Filters      253

6.1 An Introduction to Infinite Impulse Response Filters   254

6.2 The Laplace Transform   257

6.3 The z-Transform   270

6.4 Using the z-Transform to Analyze IIR Filters   274

6.5 Using Poles and Zeros to Analyze IIR Filters   282

6.6 Alternate IIR Filter Structures   289

6.7 Pitfalls in Building IIR Filters   292

6.8 Improving IIR Filters with Cascaded Structures   295

6.9 Scaling the Gain of IIR Filters   300

6.10 Impulse Invariance IIR Filter Design Method   303

6.11 Bilinear Transform IIR Filter Design Method   319

6.12 Optimized IIR Filter Design Method   330

6.13 A Brief Comparison of IIR and FIR Filters   332

References   333

Chapter 6 Problems   336

 

Chapter 7: Specialized Digital Networks and Filters      361

7.1 Differentiators   361

7.2 Integrators   370

7.3 Matched Filters   376

7.4 Interpolated Lowpass FIR Filters   381

7.5 Frequency Sampling Filters: The Lost Art   392

References   426

Chapter 7 Problems   429

 

Chapter 8: Quadrature Signals       439

8.1 Why Care about Quadrature Signals?   440

8.2 The Notation of Complex Numbers   440

8.3 Representing Real Signals Using Complex Phasors   446

8.4 A Few Thoughts on Negative Frequency   450

8.5 Quadrature Signals in the Frequency Domain   451

8.6 Bandpass Quadrature Signals in the Frequency Domain   454

8.7 Complex Down-Conversion   456

8.8 A Complex Down-Conversion Example   458

8.9 An Alternate Down-Conversion Method   462

References   464

Chapter 8 Problems   465

 

Chapter 9: The Discrete Hilbert Transform       479

9.1 Hilbert Transform Definition   480

9.2 Why Care about the Hilbert Transform?   482

9.3 Impulse Response of a Hilbert Transformer   487

9.4 Designing a Discrete Hilbert Transformer   489

9.5 Time-Domain Analytic Signal Generation   495

9.6 Comparing Analytical Signal Generation Methods   497

References   498

Chapter 9 Problems   499

 

Chapter 10: Sample Rate Conversion       507

10.1 Decimation   508

10.2 Two-Stage Decimation   510

10.3 Properties of Downsampling   514

10.4 Interpolation   516

10.5 Properties of Interpolation   518

10.6 Combining Decimation and Interpolation   521

10.7 Polyphase Filters   522

10.8 Two-Stage Interpolation   528

10.9 z-Transform Analysis of Multirate Systems   533

10.10 Polyphase Filter Implementations   535

10.11 Sample Rate Conversion by Rational Factors   540

10.12 Sample Rate Conversion with Half-band Filters   543

10.13 Sample Rate Conversion with IFIR Filters   548

10.14 Cascaded Integrator-Comb Filters   550

References   566

Chapter 10 Problems   568

 

Chapter 11: Signal Averaging      589

11.1 Coherent Averaging   590

11.2 Incoherent Averaging   597

11.3 Averaging Multiple Fast Fourier Transforms   600

11.4 Averaging Phase Angles   603

11.5 Filtering Aspects of Time-Domain Averaging   604

11.6 Exponential Averaging   608

References   615

Chapter 11 Problems   617

 

Chapter 12: Digital Data Formats and their Effects      623

12.1 Fixed-Point Binary Formats   623

12.2 Binary Number Precision and Dynamic Range   632

12.3 Effects of Finite Fixed-Point Binary Word Length   634

12.4 Floating-Point Binary Formats   652

12.5 Block Floating-Point Binary Format   658

References   658

Chapter 12 Problems   661

 

Chapter 13: Digital Signal Processing Tricks        671

13.1 Frequency Translation without Multiplication   671

13.2 High-Speed Vector Magnitude Approximation   679

13.3 Frequency-Domain Windowing   683

13.4 Fast Multiplication of Complex Numbers   686

13.5 Efficiently Performing the FFT of Real Sequences   687

13.6 Computing the Inverse FFT Using the Forward FFT   699

13.7 Simplified FIR Filter Structure   702

13.8 Reducing A/D Converter Quantization Noise   704

13.9 A/D Converter Testing Techniques   709

13.10 Fast FIR Filtering Using the FFT   716

13.11 Generating Normally Distributed Random Data   722

13.12 Zero-Phase Filtering   725

13.13 Sharpened FIR Filters   726

13.14 Interpolating a Bandpass Signal   728

13.15 Spectral Peak Location Algorithm   730

13.16 Computing FFT Twiddle Factors   734

13.17 Single Tone Detection   737

13.18 The Sliding DFT   741

13.19 The Zoom FFT   749

13.20 A Practical Spectrum Analyzer   753

13.21 An Efficient Arctangent Approximation   756

13.22 Frequency Demodulation Algorithms   758

13.23 DC Removal   761

13.24 Improving Traditional CIC Filters   765

13.25 Smoothing Impulsive Noise   770

13.26 Efficient Polynomial Evaluation   772

13.27 Designing Very High-Order FIR Filters   775

13.28 Time-Domain Interpolation Using the FFT   778

13.29 Frequency Translation Using Decimation   781

13.30 Automatic Gain Control (AGC)   783

13.31 Approximate Envelope Detection   784

13.32 AQuadrature Oscillator   786

13.33 Specialized Exponential Averaging   789

13.34 Filtering Narrowband Noise Using Filter Nulls   792

13.35 Efficient Computation of Signal Variance   797

13.36 Real-time Computation of Signal Averages and Variances   799

13.37 Building Hilbert Transformers from Half-band Filters   802

13.38 Complex Vector Rotation with Arctangents   805

13.39 An Efficient Differentiating Network   810

13.40 Linear-Phase DC-Removal Filter   812

13.41 Avoiding Overflow in Magnitude Computations   815

13.42 Efficient Linear Interpolation   815

13.43 Alternate Complex Down-conversion Schemes   816

13.44 Signal Transition Detection   820

13.45 Spectral Flipping around Signal Center Frequency   821

13.46 Computing Missing Signal Samples   823

13.47 Computing Large DFTs Using Small FFTs   826

13.48 Computing Filter Group Delay without Arctangents   830

13.49 Computing a Forward and Inverse FFT Using a Single FFT   831

13.50 Improved Narrowband Lowpass IIR Filters   833

13.51 A Stable Goertzel Algorithm   838

References   840

 

Appendix A: The Arithmetic of Complex Numbers       847

A.1 Graphical Representation of Real and Complex Numbers   847

A.2 Arithmetic Representation of Complex Numbers   848

A.3 Arithmetic Operations of Complex Numbers   850

A.4 Some Practical Implications of Using Complex Numbers   856

 

Appendix B: Closed Form of a Geometric Series       859

 

Appendix C: Time Reversal and the DFT       863

 

Appendix D: Mean, Variance, and Standard Deviation       867

D.1 Statistical Measures   867

D.2 Statistics of Short Sequences   870

D.3 Statistics of Summed Sequences   872

D.4 Standard Deviation (RMS) of a Continuous Sinewave   874

D.5 Estimating Signal-to-Noise Ratios   875

D.6 The Mean and Variance of Random Functions   879

D.7 The Normal Probability Density Function   882

 

Appendix E: Decibels (DB and DBM)       885

E.1 Using Logarithms to Determine Relative Signal Power   885

E.2 Some Useful Decibel Numbers   889

E.3 Absolute Power Using Decibels   891

 

Appendix F: Digital Filter Terminology       893

 

Appendix G: Frequency Sampling Filter Derivations       903

G.1 Frequency Response of a Comb Filter   903

G.2 Single Complex FSF Frequency Response   904

G.3 Multisection Complex FSF Phase   905

G.4 Multisection Complex FSF Frequency Response   906

G.5 Real FSF Transfer Function   908

G.6 Type-IV FSF Frequency Response   910

 

Appendix H: Frequency Sampling Filter Design Tables      913

 

Appendix I: Computing Chebyshev Window Sequences        927

I.1 Chebyshev Windows for FIR Filter Design   927

I.2 Chebyshev Windows for Spectrum Analysis   929

 

Index        931

Erscheint lt. Verlag 11.11.2010
Sprache englisch
Maße 186 x 239 mm
Gewicht 1700 g
Themenwelt Mathematik / Informatik Informatik
ISBN-10 0-13-702741-9 / 0137027419
ISBN-13 978-0-13-702741-5 / 9780137027415
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
leichter Einstieg für Senioren

von Philip Kiefer

Buch | Softcover (2024)
Markt + Technik Verlag
9,95