Spectral Algorithms
Seiten
2009
now publishers Inc (Verlag)
978-1-60198-274-2 (ISBN)
now publishers Inc (Verlag)
978-1-60198-274-2 (ISBN)
Describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. The first part of the book presents applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part is motivated by efficiency considerations.
Spectral methods refer to the use of eigenvalues, eigenvectors, singular values and singular vectors and they are widely used in Engineering, Applied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to ""discrete"" as well ""continuous"" problems.
Spectral Algorithms describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. The first part of the book presents applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part is motivated by efficiency considerations. A feature of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on ""sampling on the y"" from massive matrices. Good estimates of singular values and low rank approximations of the whole matrix can be provably derived from a sample. The main emphasis in the second part of the book is to present these sampling methods with rigorous error bounds. It also presents recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems.
Spectral methods refer to the use of eigenvalues, eigenvectors, singular values and singular vectors and they are widely used in Engineering, Applied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to ""discrete"" as well ""continuous"" problems.
Spectral Algorithms describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. The first part of the book presents applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part is motivated by efficiency considerations. A feature of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on ""sampling on the y"" from massive matrices. Good estimates of singular values and low rank approximations of the whole matrix can be provably derived from a sample. The main emphasis in the second part of the book is to present these sampling methods with rigorous error bounds. It also presents recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems.
Part I Applications 1: The Best-Fit Subspace 2: Mixture Models 3: Probabilistic Spectral Clustering 4: Recursive Spectral Clustering 5: Optimization via Low-Rank Approximation Part II Algorithms 6: Matrix Approximation via Random Sampling 7: Adaptive Sampling Methods 8: Extensions of SVD. References.
Erscheint lt. Verlag | 6.10.2009 |
---|---|
Reihe/Serie | Foundations and Trends® in Theoretical Computer Science |
Verlagsort | Hanover |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 224 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
ISBN-10 | 1-60198-274-7 / 1601982747 |
ISBN-13 | 978-1-60198-274-2 / 9781601982742 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
Lehmanns Media (Verlag)
39,99 €
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media
Buch | Softcover (2021)
Springer (Verlag)
29,99 €
Interlingua zur Gewährleistung semantischer Interoperabilität in der …
Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99 €