Proofs from THE BOOK

Buch | Hardcover
VIII, 274 Seiten
2009 | 4th ed. 2010. Corr. 3rd printing 2013
Springer Berlin (Verlag)
978-3-642-00855-9 (ISBN)
42,75 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
The (mathematical) heroes of this book are "perfect proofs": brilliant ideas, clever connections and wonderful observations that bring new insight and surprising perspectives on basic and challenging problems from Number Theory, Geometry, Analysis, Combinatorics, and Graph Theory. Thirty examples are presented here. Paul Erdös suggested many of the topics in this collection. The result is a book which will be fun for everybody with an interest in mathematics, requiring only a very modest (undergraduate) mathematical background. As well as the original material, this revised and enlarged fourth edition has new chapters on treat classical results such as the "Fundamental Theorem of Algebra" and tilings problems, but also recent proofs, such as the Kneser conjecture in graph theory.
PaulErdos ? likedtotalkaboutTheBook,inwhichGodmaintainstheperfect proofsformathematicaltheorems,followingthedictumofG. H. Hardythat there is no permanent place for ugly mathematics. Erdos ? also said that you need not believe in God but, as a mathematician, you should believe in The Book. A few years ago, we suggested to him to write up a ?rst (and very modest) approximation to The Book. He was enthusiastic about the idea and, characteristically, went to work immediately, ?lling page after page with his suggestions. Our book was supposed to appear in March 1998 as a present to Erdos ? 85th birthday. With Paul s unfortunate death in the summer of 1996, he is not listed as a co-author. Instead this book is dedicated to his memory. ? Paul Erdos We have no de?nition or characterization of what constitutes a proof from The Book: all we offer here is the examples that we have selected, h- ing that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations. We also hope that our readers will enjoy this despite the imperfections of our exposition. The selection is to a ? great extent in?uencedby Paul Erdos himself. A largenumberof the topics were suggested by him, and many of the proofs trace directly back to him, or were initiated by his supreme insight in asking the right question or in makingthe rightconjecture. So to a largeextentthisbookre?ectstheviews of Paul Erdos ? as to what should be considered a proof from The Book.

Günter M. Ziegler, 1963 in München geboren, studierte in München und am MIT Mathematik und wurde mit 31 der jüngste Professor an der TU Berlin. Ausgezeichnet mit dem Leibniz-Preis, dem höchsten deutschen Forschungspreis, sowie dem Communicator-Preis, begann er als Präsident der Mathematiker-Vereinigung und "Jahr der Mathematik"-Initiator eine große Charme-Offensive für sein Fach. Und die setzt er jetzt von der FU Berlin aus fort.

Number Theory.- Six proofs of the infinity of primes.- Bertrand s postulate.- Binomial coefficients are (almost) never powers.- Representing numbers as sums of two squares.- The law of quadratic reciprocity.- Every finite division ring is a field.- Some irrational numbers.- Three times ?²/6.- Geometry.- Hilbert s third problem: decomposing polyhedra.- Lines in the plane and decompositions of graphs.- The slope problem.- Three applications of Euler s formula.- Cauchy s rigidity theorem.- Touching simplices.- Every large point set has an obtuse angle.- Borsuk s conjecture.- Analysis.- Sets, functions, and the continuum hypothesis.- In praise of inequalities.- The fundamental theorem of algebra.- One square and an odd number of triangles.- A theorem of Pólya on polynomials.- On a lemma of Littlewood and Offord.- Cotangent and the Herglotz trick.- Buffon s needle problem.- Combinatorics.- Pigeon-hole and double counting.- Tiling rectangles.- Three famous theorems on finite sets.- Shuffling cards.- Lattice paths and determinants.- Cayley s formula for the number of trees.- Identities versus bijections.- Completing Latin squares.- Graph Theory.- The Dinitz problem.- Five-coloring plane graphs.- How to guard a museum.- Turán s graph theorem.- Communicating without errors.- The chromatic number of Kneser graphs.- Of friends and politicians.- Probability makes counting (sometimes) easy.

Erscheint lt. Verlag 13.10.2009
Illustrationen Karl H. Hofmann
Zusatzinfo VIII, 274 p. 250 illus.
Verlagsort Berlin
Sprache englisch
Maße 235 x 155 mm
Gewicht 848 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Schlagworte Algebra • Analysis • Beweis (Mathematik) • Calculus • combinatorics • Counting • Finite • Function • Geometry • Identity • Mathematik; Handbuch/Lehrbuch • Number Theory • Proof • proofs • Theorem
ISBN-10 3-642-00855-0 / 3642008550
ISBN-13 978-3-642-00855-9 / 9783642008559
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich