Linear Mixed Models for Longitudinal Data

Buch | Softcover
570 Seiten
2009
Springer-Verlag New York Inc.
978-1-4419-0299-3 (ISBN)

Lese- und Medienproben

Linear Mixed Models for Longitudinal Data - Geert Verbeke, Geert Molenberghs
149,79 inkl. MwSt
This paperback edition is a reprint of the 2000 edition.



This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models).
This paperback edition is a reprint of the 2000 edition.





This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commercially available packages are discussed as well. Great care has been taken in presenting the data analyses in a software-independent fashion.

Examples.- A Model for Longitudinal Data.- Exploratory Data Analysis.- Estimation of the Marginal Model.- Inference for the Marginal Model.- Inference for the Random Effects.- Fitting Linear Mixed Models with SAS.- General Guidelines for Model Building.- Exploring Serial Correlation.- Local Influence for the Linear Mixed Model.- The Heterogeneity Model.- Conditional Linear Mixed Models.- Exploring Incomplete Data.- Joint Modeling of Measurements and Missingness.- Simple Missing Data Methods.- Selection Models.- Pattern-Mixture Models.- Sensitivity Analysis for Selection Models.- Sensitivity Analysis for Pattern-Mixture Models.- How Ignorable Is Missing At Random?.- The Expectation-Maximization Algorithm.- Design Considerations.- Case Studies.

Reihe/Serie Springer Series in Statistics
Zusatzinfo 128 Illustrations, black and white; XXII, 570 p. 128 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4419-0299-6 / 1441902996
ISBN-13 978-1-4419-0299-3 / 9781441902993
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
28,00
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
39,99