Global Differential Geometry and Global Analysis
Springer Berlin (Verlag)
978-3-540-10285-4 (ISBN)
E. B. Christoffels Einfluss auf die Geometrie.- Distance geometry in Riemannian manifolds-with-boundary.- Laplacian with a potential.- Laplacian and riemannian submersions with totally geodesic fibres.- A plateau problem with many solutions for boundary curves in a given knot class.- Ricci curvature and einstein metrics.- Smooth approximation of polyhedral surfaces with respect to curvature measures.- Invariant eigenfunctions of the laplacian and their asymptotic distribution.- The bieberbach case in gromov's almost flat manifold theorem.- Tight spherical embeddings.- Characterizations of space forms by hypersurfaces.- On graded bundles and their geometry.- Compact riemannian manifolds with harmonic curvature and non-parallel ricci tensor.- Stability of minimal submanifolds.- A generalization of Weyl's tube formula.- The X-ray transform on a symmetric space.- Visibility, horocycles, and the Bruhat decomposition.- On holomorphic connections.- Fiber parallelism and connections.- Riemannian manifolds the geodesic balls of which are near to the Euclidean balls by volume.- Tight foliations.- Minima and critical points of the energy in dimension two.- S1-actions on almost complex manifolds.- On conformal immersions of space forms.- Some remarks on elliptic equations and infinitesimal deformations of submanifolds.- The spectrum of the laplacian and the curvature of sasakian manifolds.- Geodesic chains and the spherical mean operator.- The spectrum of the laplace operator for a special complex manifold.- On the holomorphicity of harmonic maps from a surface.- Codazzi tensors and reducible submanifolds.- Codazzi tensor fields and curvature operators.- Some remarks on the local structure of codazzi tensors.- A remark on codazzi tensors in constant curvature spaces.- Acontribution to the "Codazzi" discussion.- Codazzi pairs on surfaces.- An application of a. d. Aleksandrov's inequality to the problem of characterization of spheres.- Codazzi tensors.- Verallgemeinerung eines Satzes von Leung und Nomizu.- Codazzi - Tensors in surface theory.
Erscheint lt. Verlag | 1.1.1981 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | XI, 298 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 480 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Curvature • Differential Geometry • Globale Analysis • Globale Differentialgeometrie • manifold |
ISBN-10 | 3-540-10285-X / 354010285X |
ISBN-13 | 978-3-540-10285-4 / 9783540102854 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich