Algebraic K-Theory
Springer Berlin (Verlag)
978-3-540-07996-5 (ISBN)
An example in the theory of algebraic cycles spencer bloch.- SK1 of commutative normed algebras.- The K-theory of some reducible affine curves: A combinatorial approach.- SKn of orders and Gn of finite rings.- K2 of a global field consists of symbols.- Generators and relations for K2 of a division ring.- Injective stability for K2.- Les matrices monomiales et le groupe de whitehead ?h2.- Finitely presented groups of matrices.- Homology sphere bordism and quillen plus construction.- Letter from Quillen to Milnor on .- Characteristic classes of representations.- Higher algebraic K-theory: II.- Continuous cohomology and p-adic K-theory.- Cohomology of groups.- On the homology and cohomology of the orthogonal and symplectic groups over a finite field of odd characteristic.- Homology of classical groups over a finite field.- Group cohomology classes with differential form coefficients.- Stability for H2 (Sun).- Homological stability for classical groups over finite fields.- Hermitian K-theory in topology: A survey of some recent results.- Higher witt groups: A survey.- The exact sequence of a localization for witt groups.- Orthogonal representations on positive definite lattices.- The computation of surgery groups of finite groups with abelian 2-hyperelementary subgroups.
Erscheint lt. Verlag | 1.11.1976 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | XIV, 414 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 599 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Algebraic • Algebraic K-Theory • Characteristic class • cohomology • Homology • K-Theorie • K-theory |
ISBN-10 | 3-540-07996-3 / 3540079963 |
ISBN-13 | 978-3-540-07996-5 / 9783540079965 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich