Principles and Theory for Data Mining and Machine Learning
Seiten
2009
Springer-Verlag New York Inc.
978-0-387-98134-5 (ISBN)
Springer-Verlag New York Inc.
978-0-387-98134-5 (ISBN)
The idea for this book came from the time the authors spent at the Statistics and Applied Mathematical Sciences Institute (SAMSI) in Research Triangle Park in North Carolina starting in fall 2003. The rst author was there for a total of two years, the rst year as a Duke/SAMSI Research Fellow. The second author was there for a year as a Post-Doctoral Scholar. The third author has the great fortune to be in RTP p- manently. SAMSI was – and remains – an incredibly rich intellectual environment with a general atmosphere of free-wheeling inquiry that cuts across established elds. SAMSI encourages creativity: It is the kind of place where researchers can be found at work in the small hours of the morning – computing, interpreting computations, and developing methodology. Visiting SAMSI is a unique and wonderful experience. The people most responsible for making SAMSI the great success it is include Jim Berger, Alan Karr, and Steve Marron. We would also like to express our gratitude to Dalene Stangl and all the others from Duke, UNC-Chapel Hill, and NC State, as well as to the visitors (short and long term) who were involved in the SAMSI programs. It was a magical time we remember with ongoing appreciation.
Variability, Information, and Prediction.- Local Smoothers.- Spline Smoothing.- New Wave Nonparametrics.- Supervised Learning: Partition Methods.- Alternative Nonparametrics.- Computational Comparisons.- Unsupervised Learning: Clustering.- Learning in High Dimensions.- Variable Selection.- Multiple Testing.
Reihe/Serie | Springer Series in Statistics |
---|---|
Zusatzinfo | XII, 786 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-387-98134-9 / 0387981349 |
ISBN-13 | 978-0-387-98134-5 / 9780387981345 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Datenanalyse für Künstliche Intelligenz
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95 €
Auswertung von Daten mit pandas, NumPy und IPython
Buch | Softcover (2023)
O'Reilly (Verlag)
44,90 €