Monolithic Nanoscale Photonics-Electronics Integration in Silicon and Other Group IV Elements -  Henry Radamson,  Lars Thylen

Monolithic Nanoscale Photonics-Electronics Integration in Silicon and Other Group IV Elements (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
182 Seiten
Elsevier Science (Verlag)
978-0-12-419996-5 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
47,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Silicon technology is evolving rapidly, particularly in board-to-board or chip-to chip applications. Increasingly, the electronic parts of silicon technology will carry out the data processing, while the photonic parts take care of the data communication. For the first time, this book describes the merging of photonics and electronics in silicon and other group IV elements. It presents the challenges, the limitations, and the upcoming possibilities of these developments. The book describes the evolution of CMOS integrated electronics, status and development, and the fundamentals of silicon photonics, including the reasons for its rapid expansion, its possibilities and limitations. It discusses the applications of these technologies for such applications as memory, digital logic operations, light sources, including drive electronics, optical modulators, detectors, and post detector circuitry. It will appeal to engineers in the fields of both electronics and photonics who need to learn more about the basics of the other field and the prospects for the integration of the two.


  • Combines the topics of photonics and electronics in silicon and other group IV elements
  • Describes the evolution of CMOS integrated electronics, status and development, and the fundamentals of silicon photonics


Silicon technology is evolving rapidly, particularly in board-to-board or chip-to chip applications. Increasingly, the electronic parts of silicon technology will carry out the data processing, while the photonic parts take care of the data communication. For the first time, this book describes the merging of photonics and electronics in silicon and other group IV elements. It presents the challenges, the limitations, and the upcoming possibilities of these developments. The book describes the evolution of CMOS integrated electronics, status and development, and the fundamentals of silicon photonics, including the reasons for its rapid expansion, its possibilities and limitations. It discusses the applications of these technologies for such applications as memory, digital logic operations, light sources, including drive electronics, optical modulators, detectors, and post detector circuitry. It will appeal to engineers in the fields of both electronics and photonics who need to learn more about the basics of the other field and the prospects for the integration of the two. Combines the topics of photonics and electronics in silicon and other group IV elements Describes the evolution of CMOS integrated electronics, status and development, and the fundamentals of silicon photonics

Front Cover 1
Monolithic Nanoscale Photonics—Electronics Integration in Silicon and Other Group IV Elements 4
Copyright Page 5
Contents 6
Acknowledgments 10
Introduction: Scope and Purpose of Book 12
1 Metal Oxide Semiconductor Field Effect Transistors 16
Part One: Basics of Metal Oxide Semiconductor Field Effect Transistors 17
Surface Space–Charge Regions in MOSFETs 19
Leakage Components in MOSFETs 22
Subthreshold Current 22
Gate–Oxide Leakage 23
S/D Junction Leakage 23
MOS Capacitors 23
Static Characterization of MOSFETs 24
Transfer from 2D to 3D Nanoscaled Transistors 28
Gate Integration in FinFETs 30
Parasitic Sources in MOSFET Structure 31
Lithography of Nanoscaled MOSFETs 32
Sidewall Transfer Lithography 32
Part Two: Strain Engineering in Group IV Materials 33
Strain Design for MOSFETs 37
Strain Effect on Carrier Mobility 38
Basic Definitions 38
Carrier Mobility in MOSFETs with Strained Si Channel 39
Strain and Critical Thickness 43
Global Critical Thickness of SiGe Layers 43
Critical Thickness of SiGe Layers on Patterned Substrates 45
Critical Thickness of SiGe Layers Grown on Nano Features 45
Strain Measurements and Applications 46
Strain Measurement 46
Raman Spectroscopy 46
TEM Analysis 48
High-Resolution X-Ray Analysis 48
Part Three: Chemical Vapor Deposition of Group IV Materials 50
Selective and Nonselective Epitaxy 51
Part Four: Improvement of the Channel Mobility 57
Effect of Recess Shape in S/D 57
Channel Materials and Mobility 59
III–V Materials 59
Graphene Material 61
Silicene, Germanene, and Other Similar 2D Materials 65
Germanium Material 67
References 69
2 Basics of Integrated Photonics 78
General 78
Buried Channel Waveguide 81
Strip-Loaded Waveguide 81
Ridge Waveguide 81
Rib Waveguide 81
Basics of Lasers, Modulators, Detectors, and Wavelength Selective Devices 83
Lasers 83
Basics Of Photonic Detectors 85
Detector Characteristics 87
Responsivity 89
Dark Current 89
Noise Characteristics of Photodetectors 89
Modulators: Principles and Mechanisms of Optical Modulation 91
Photonics Switches: Spatial Routing of High-Speed Data Streams 94
Switches 94
Devices for Wavelength Division Multiplexed Systems 96
Devices Based on Spectrally Dependent Interference Effects 98
References 99
3 Silicon and Group IV Photonics 102
Part One: Silicon Photonics Elements for Integrated Photonics 102
General Properties 102
Silicon Photonics Elements for Integrated Photonics: Modulators and Wavelength Selective Devices 104
Silicon Electro-Optic Modulators 104
Wavelength Selective Devices in Silicon 105
The Ring Resonator 106
Part Two: Bandgap Engineering in Group IV Materials for Photonic Application 110
Part Three: Group IV Photodetectors 115
Integration of Photodiodes with Waveguide or MOSFETs 118
PhotoMOSFETs 119
Group IV-Based Lasers 121
Part Four: Graphene, New Photonic Material 126
Photodetectors 129
References 131
4 Moore’s Law for Photonics and Electronics 136
Downscaling of CMOS 136
Evolution of Logic CMOS Since 1970 139
Prior to NTRS and ITRS Roadmaps 139
After NRTS and ITRS 139
Future of Logic CMOS and Beyond CMOS 140
Transistor Physical Parameters 140
Lithography 143
Strain Engineering and Downscaling 146
Gate Electrode 147
Gate Dielectric 148
Contact Resistance 151
Substrate Design 152
Heat Production 153
Short Channel Effects 154
Drain-Induced Barrier Lowering 155
Punch Through 156
Mobility Degradation 156
Velocity Saturation 157
Hot Electron Effect 158
3D Chips, New Vision for Downscaling 158
Downscaling for Next 30 Years 159
Moore’s Law for Integrated Photonics Devices and Some Vision for the Future 160
References 162
5 Complementing Silicon With Other Materials for Light Emission, Efficient Light Modulation and Subwavelength Light Confinement 166
Part One: Light-Emitting Sources in Si as Photonic Material 166
Rare Earth Metals in Semiconductors 169
Porous Silicon 170
Part Two: Competing and Complementing Technologies and Materials to an all Group IV-Based Photonics Approach 173
III–V Materials, Plasmonics, and electrooptic polymers (EOPs) 173
Introduction 173
Monolithic Integration of III–V Compounds on Silicon 173
Plasmonics 174
Electro-Optic Polymers 178
Authors’ Final Words 180
References 182

Chapter 2

Basics of Integrated Photonics


In this chapter, the basic of photonic components including different waveguide design, modulators, lasers, and detectors is presented.

Keywords


Waveguides; modulators; laser; detectors; general

Outline

General


Integrated photonics devices, and indeed most photonics systems, include sources (lasers, LEDs), light detectors, and an optical waveguide (or possibly free space) based “fabric” or network in between to transport light in some shape. In the waveguided version, this fabric can include optical modulators, changing amplitude, phase, and/or polarization of the light, as well as switches, to redirect light, optical amplifiers, and wavelength selective structures for filtering, wavelength multiplexing and demultiplexing, and other operations involving wavelengths or light frequency. Integrated photonics has developed at a considerably slower pace than integrated electronics, as a matter of fact, it was a subject of a joke stating that “integrated photonics is the technology of the future and will remain the technology of the future.” However, this state of affairs has altogether been changed by progress in material technology in III–V compounds (GaAs, InP systems, etc), ferroelectrics (LiNbO3), silicon, polymers, and metal optics.

The basic structure of an integrated photonics circuit is the optical waveguide (Figure 2.1). In most photonics integration applications and in all such applications where highest performance is sought, these waveguides are single mode, by which is meant that only one spatial mode can propagate, and other modes are evanescent or cut off [1]. However, the waveguides are not strictly single mode and normally support two orthogonal polarizations, a fact that has caused a number of problems in the past and present. The reason is that the standard single mode fiber does not preserve light polarization, and hence photonic elements in a fabric of such fibers need to work independently of the state of polarization of the input light. Such polarization independence normally means that compromises in the device performance have to be made.


Figure 2.1 Schematic diagram of a planar dielectric waveguide in Cartesian coordinate system. nc, nco, and nsub stand for refractive indices of the cover layer, guided wave layer (core), and substrate, respectively. Light is confined in the y direction and generally most of the optical field resides in the core. Light propagation is in the z direction.

A so-called channel waveguide confines light in two dimensions (in the so-called core) while it propagates in the third dimension. In the more exotic so-called plasmonic waveguide, light can be guided along a single plasmonic, usually metal-dielectric interface, as will be briefly discussed below. The confinement of light in the two dimensions orthogonal to the direction of light propagation is accomplished by total internal reflection [1], just like in an optical fiber, by having a core with higher refractive index than the surrounding. This surrounding is called cladding in a fiber and is in general partly the substrate in a PIC.

Figure 2.2 shows some basic structures of integrated photonic waveguides, with a central core of higher refractive index than the surrounding medium, cladding, or substrate. The optical field is also shown in Figure 2.3.


Figure 2.2 Nonplanar dielectric waveguide types: (a) buried channel, (b) strip-loaded, (c) ridge, and (d) rib.

Figure 2.3 Electric field distribution of Transverse Electric (TE) mode in a silicon channel dielectric waveguide, the Ex(0, y) and Ex(x, 0) curves express the amplitude distribution in x- and y-axis directions, respectively; the substrate material is SiO2, and the cover is air. The guided layer is made of silicon material with the geometry parameters are height=200 nm and width=450 nm.

Buried Channel Waveguide


Figure 2.2(a) shows a buried channel waveguide, and it consists of a high-index waveguiding core buried in a low-index cladding. The optical wave can be confined in two dimensions due to differences of refractive index between the core and the cladding.

Strip-Loaded Waveguide


Figure 2.2(b) is the geometry of a strip-loaded waveguide, which is composed of three dielectric layers: a substrate, a planar layer, and then a ridge. The planar waveguide (without the strip) already provides optical confinement in the vertical direction (y-axis), and the additional strip can offer localized optical confinement under the strip, due to the local increase of effective refractive index.

Ridge Waveguide


Figure 2.2(c) is the ridge waveguide, which is a step-index structure. The difference between dielectric layers at the sides of the guide, as well as the top and bottom faces, can confine the optical wave in two dimensions.

Rib Waveguide


Figure 2.2(d) is the cross-section of a rib waveguide. The guiding layer basically consists of a slab with a strip (or several strips) superimposed onto it, which has a similar structure as the strip-loaded waveguide, and the strip is part of the waveguiding core.

The waveguides are characterized by the following:

• Optical power loss, usually in dB/cm.

• Effective index, usually denoted by N or Neff, which is equal to β/k0, where β is the real part of the propagation constant and k0 is the wave number in vacuum. The effective index is, for guided waves, larger than cladding index but smaller than core index.

• Dispersion, i.e. the variation of the effective index with wavelength. This determines limitations in the propagation length of very short pulses but is normally not so important in PICs due to the small propagation distances. However, for the devices in PICs, such as filters, the so-called group delay dispersion, i.e. the derivative of the group delay with respect to angular frequency can be significant and important.

• Geometrical waveguide and optical field cross-sectional area.

• The useful wavelength range for light transportation. These are characterized by several “bands” between 1260 and 1675 nm for ICT applications.

Waveguide parameters and propagation characteristics for waveguides fabricated with different material compositions are presented in Table 2.1. SOI is silicon on insulator, usually quartz (SiO2). Small waveguide bending radii are desirable for dense integration.

Table 2.1

Waveguide Parameters for Different Materials




Index difference Δ (%)
=ncore−ncladncore
0.3 0.45 0.75 3.3 7.0 (46) 41 (46)
Core size (µm) 8×8 7×7 6×6 3×2 2.5×0.5 (0.2×0.5) 0.2×0.5
0.3×0.3
Loss (dB/cm) <0.01 0.02 0.04 0.1 2.5–3.5 1.8–2.0
Coupling loss (dB/point) <0.1 0.1 0.4 3.7 (2) 5 6.8 (0.8)
Waveguide bending radius (mm) 25 15 5 0.8 0.25 (0.005) 0.002–0.005

The waveguides connect different functional elements—lasers, modulators, switches, optical amplifiers, wavelength selective devices, detectors, etc.—and are generally also used to create these device structures, as will be described in the following section. Figure 2.4 shows one of the first publications introducing the concept of integrated photonics.


Figure 2.4 Artists sketch of a monolithic integrated photonics circuit, encompassing single mode waveguides on a planar surface. The waveguides connect the laser source to modulators (see...

Erscheint lt. Verlag 24.9.2014
Sprache englisch
Themenwelt Kunst / Musik / Theater Design / Innenarchitektur / Mode
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-12-419996-8 / 0124199968
ISBN-13 978-0-12-419996-5 / 9780124199965
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 16,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 4,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Geschichte der Welt in Büchern

von Irene Vallejo

eBook Download (2022)
Diogenes (Verlag)
24,99