Analog Circuits Cookbook -  Ian Hickman

Analog Circuits Cookbook (eBook)

(Autor)

eBook Download: PDF | EPUB
1999 | 2. Auflage
336 Seiten
Elsevier Science (Verlag)
978-0-08-049908-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
73,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Analog Circuits Cookbook is a collection of tried and tested recipes form the masterchef of analog and RF design. Based on articles from Electronics World, this book provides a diet of high quality design techniques and applications, and proven ciruit designs, all concerned with the analog, RF and interface fields of electronics. Ian Hickman uses illustrations and examples rather than tough mathematical theory to present a wealth of ideas and tips based on his own workbench experience.







This second edition includes 10 of Hickman's latest articles, alongside 20 of his most popular classics. The new material includes articles on power supplies, filters using negative resistance, phase noise and video surveillance systems.

Essential reading for all circuit design professionals and advanced hobbyists
Contains 10 of Ian Hickman's latest articles, alongside 20 of his most popular classics.
Analog Circuits Cookbook is a collection of tried and tested recipes form the masterchef of analog and RF design. Based on articles from Electronics World, this book provides a diet of high quality design techniques and applications, and proven ciruit designs, all concerned with the analog, RF and interface fields of electronics. Ian Hickman uses illustrations and examples rather than tough mathematical theory to present a wealth of ideas and tips based on his own workbench experience. This second edition includes 10 of Hickman's latest articles, alongside 20 of his most popular classics. The new material includes articles on power supplies, filters using negative resistance, phase noise and video surveillance systems. Essential reading for all circuit design professionals and advanced hobbyists Contains 10 of Ian Hickman's latest articles, alongside 20 of his most popular classics

Front Cover 1
Analog Circuits Cookbook 4
Copyright Page 5
Contents 6
Preface to second edition 9
Chapter 1. Advanced circuit techniques, components and concepts 11
Negative approach to positive thinking 11
Logamps for radar – and much more 20
Working with avalanche transistors 26
Filters using negative resistance 36
Big surprises … in small packages 49
Chapter 2. Audio 67
Low distortion audio frequency oscillators 67
Notes on free phasing 71
Music in mind 83
Filter variations 94
Camcorder dubber 104
Chapter 3. Measurements (audio and video) 109
Four opamp inputs are better than two 109
DC accurate filter plays anti-alias role 114
Bootstrap base to bridge building 120
Mighty filter power in minuscule packages 126
’Scope probes – active and passive 136
Chapter 4. Measurements (rf) 152
Measuring detectors (Part 1) 152
Measuring detectors (Part 2) 157
Measuring L and C at frequency – and on a budget 161
Add on a spectrum analyser 170
Wideband isolator 187
Chapter 5. Opto 201
Sensing the position 201
Bringing the optoisolator into line 208
Light update 215
A look at light 223
Chapter 6. Power supplies and devices 238
Battery-powered instruments 238
The MOS controlled thyristor 252
Designer's power supply 262
Chapter 7. RF circuits and techniques 278
Homodyne reception of FM signals 278
LTPs and active double balanced mixers 291
Low power radio links 298
Noise 312
Understanding phase noise 326
Index 339

1

Advanced circuit techniques, components and concepts


Negative approach to positive thinking

Negative components

Negative components may not be called for every day, but can be extremely useful in certain circumstances. They can be easily simulated with passive components plus opamps and one should be aware of the possibilities they offer.

There is often felt to be something odd about negative components, such as negative resistance or inductance, an arcane aura setting them apart from the real world of practical circuit design. The circuit designer in the development labs of a large firm can go along to stores and draw a dozen 100 kΩ resistors or half a dozen 10 μF tantalums for example, but however handy it would be, it is not possible to go and draw a −4.7 kΩ resistor. Yet negative resistors would be so useful in a number of applications; for example when using mismatch pads to bridge the interfaces between two systems with different characteristic impedances. Even when the difference is not very great, for example testing a 75 Ω bandpass filter using a 50 Ω network analyser, the loss associated with each pad is round 6 dB, immediately cutting 12 dB off how far down you can measure in the stopband. With a few negative resistors in the junk box, you could make a pair of mismatch pads with 0 dB insertion loss each.

But in circuit design, negative component values do turn up from time to time and the experienced designer knows when to accommodate them, and when to redesign in order to avoid them. For example, in a filter design it may turn out that a −3 pF capacitor, say, must be added between nodes X and Y. Provided that an earlier stage of the computation has resulted in a capacitance of more than this value appearing between those nodes, there is no problem; it is simply reduced by 3 pF to give the Final value. In the case where the final value is still negative, it may be necessary to redesign to avoid the problem, particularly at UHF and above. At lower frequencies, there is always the option of using a ‘real’ negative capacitator (or something that behaves exactly like one); this is easily implemented with an ‘ordinary’ (positive) capacitor and an opamp or two, as are negative resistors and inductors. However, before looking at negative components using active devices, note that they can be implemented in entirely passive circuits if you know how (Roddam, 1959). Figure 1.1(a) shows a parallel tuned circuit placed in series with a signal path, to act as a trap, notch or rejector circuit. Clearly it only works well if the load resistance Rl is low compared with the tuned circuit’s dynamic impedance Rd. If Rl is near infinite, the trap makes no difference, so Rd should be much greater than Rl; indeed, ideally we would make Rd infinite by using an inductor (and capacitor) with infinite Q. An equally effective ploy would be to connect a resistance of −Rd in parallel with the capacitor, cancelling out the coil’s loss exactly and effectively raising Q to infinity. This is quite easily done, as in Figure 1.1(b), where the capacitor has been split in two, and the tuned circuit’s dynamic resistance Rd (Rd = QωL, assuming the capacitor is perfect) replaced by an equivalent series loss component r associated with the coil (r = ωL/Q). From the junction of the two capacitors, a resistor R has been connected to ground. This forms a star network with the two capacitors, and the next step is to transform it to a delta network, using the star-delta equivalence formulae. The result is as in Figure 1.1(c) and the circuit can now provide a deep notch even Rl is infinite, owing to the presence of the shunt impedance Zp across the output, if the right value for R is chosen. So, let R′ = –r, making the resistive component of Zs (in parallel form) equal to –Rd. Now R′ turns out to be −1/(4ω2C2R) and equating this to –r gives R = Rd/4.

Figure 1.1 (a) A parallel tuned circuit used as a rejector. The notch depth is set by the ratio of the tuned circuit’s dynamic resistance Rdand the load resistance RI. At F0 the tuned circuit is equivalent to a resistance Rd = QωL (Q of capacitor assumed much larger). F0 = 1/2π√(LC). (b) The circuit modified to provide a deep notch, tuned frequency unchanged. Coil series losses r = ωL/Q = Rd/Q2(c) As (b) but with the star network transformed to the equivalent delta network. Zs = (–j/ωC) −1/(4ω2C2R). So C′ = C and R′ = −1/(4ω2C2R) and if R′ = −r = −Rd/Q2then R = Rd/4, Zp = (j/2ωC) + (Rd/2)

Negative inductor


Now for a negative inductor, and all entirely passive – not an opamp in sight. Figure 1.2(a) shows a section of constant-K lowpass filter acting as a lumped passive delay line. It provides a group delay dB/dω of √(LC) seconds per section. Figure 1.2(b) at dc and low frequencies, maintained fairly constant over much of the passband of the filter. A constant group delay (also known as envelope delay) means that all frequency components passing through the delay line (or through a filter of any sort) emerge at the same time as each other at the far end, implying that the phase delay B = ω √(LC) radians per section is proportional to frequency. (Thus a complex waveform such as an AM signal with 100% modulation will emerge unscathed, with its envelope delayed but otherwise preserved unchanged. Similarly, a squarewave will be undistorted provided all the significant harmonics lie within the range of frequencies for which a filter exhibits a constant group delay. Constant group delay is thus particularly important for an IF bandpass filter handling phase modulated signals.) If you connect an inductance L′ (of suitable value) in series with each of the shunt capacitors, the line becomes an ‘m-derived’ lowpass filter instead of a constant-K filter, with the result that the increase of attenuation beyond the cut-off frequency is much more rapid. However, that is no great benefit in this application, a delay line is desired above all to provide a constant group delay over a given bandwidth and the variation in group delay of an m-derived filter is much worse even than that of a constant-K type. Note that L′ may not be a separate physical component at all, but due to mutual coupling between adjacent sections of series inductance, often wound one after the other, between tapping points on a cylindrical former in one long continuous winding. If the presence of shunt inductive components L′ makes matters worse than the constant-K case, the addition of negative L′ improves matters. This is easily arranged (Figure 1.2(c)) by winding each series section of inductance in the opposite sense to the previous one.

Figure 1.2 (a) Basic delay line(b) providing a delay of √(LC) seconds per section at dc and low frequencies. (c) Connection of negative inductance in the shunt arms to linearise the group delay over a larger proportion of the filter’s passband. Not a physical component, it is implemented by negative mutual inductance (bucking coupling) between sections of series inductance

Real pictures


Now for some negative components that may, in a sense, seem more real, implemented using active circuitry. Imagine connecting the output of an adjustable power supply to a 1 Ω resistor whose other end, like that of the supply’s return lead, is connected to ground. Then for every volt positive (or negative) that you apply to the resistor, 1 A will flow into (or out of) it. Now imagine that, without changing the supply’s connections, you arrange that the previously earthy end of the resistor is automatically jacked up to twice the power supply output voltage, whatever that happens to be. Now, the voltage across the resistor is always equal to the power supply output voltage, but of the opposite polarity. So when, previously, current flowed into the resistor, it now supplies an output current, and vice versa. With the current always of the wrong sign, Ohm’s law will still hold if we label the value of the resistor −1 Ω. Figure 1.3(a) shows the scheme, this time put to use to provide a capacitance of −C μF, and clearly substituting L for C will give a negative inductance. For a...

Erscheint lt. Verlag 16.4.1999
Sprache englisch
Themenwelt Kunst / Musik / Theater Design / Innenarchitektur / Mode
Technik Elektrotechnik / Energietechnik
ISBN-10 0-08-049908-2 / 0080499082
ISBN-13 978-0-08-049908-6 / 9780080499086
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 24,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 11,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Strategie und Methodik für Designprozesse

von Mareike Roth; Oliver Saiz

eBook Download (2023)
Birkhäuser (Verlag)
48,00