Conceptual Foundations of Materials -

Conceptual Foundations of Materials (eBook)

A Standard Model for Ground- and Excited-State Properties
eBook Download: PDF
2006 | 1. Auflage
244 Seiten
Elsevier Science (Verlag)
978-0-08-046457-2 (ISBN)
Systemvoraussetzungen
170,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The goal of this Volume Conceptual Foundations of Materials: A standard model for ground- and excited-state properties is to present the fundamentals of electronic structure theory that are central to the understanding and prediction of materials phenomena and properties. The emphasis is on foundations and concepts. The Sections are designed to offer a broad and comprehensive perspective of the field. They cover the basic aspects of modern electronic structure approaches and highlight their applications to the structural (ground state, vibrational, dynamic and thermodynamic, etc.) and electronic (spectroscopic, dielectric, magnetic, transport, etc.) properties of real materials including solids, clusters, liquids, and nanostructure materials. This framework also forms a basis for studies of emergent properties arising from low-energy electron correlations and interactions such as the quantum Hall effects, superconductivity, and other cooperative phenomena.

Although some of the basics and models for solids were developed in the early part of the last century by figures such as Bloch, Pauli, Fermi, and Slater, the field of electronic structure theory went through a phenomenal growth during the past two decades, leading to new concepts, understandings, and predictive capabilities for determining the ground- and excited-state properties of real, complex materials from first principles. For example, theory can now be used to predict the existence and properties of materials not previously realized in nature or in the laboratory. Computer experiments can be performed to examine the behavior of individual atoms in a particular process, to analyze the importance of different mechanisms, or just to see what happen if one varies the interactions and parameters in the simulation. Also, with ab initio calculations, one can determine from first principles important interaction parameters which are needed in model studies of complex processes or highly correlated systems. Each time a new material or a novel form of a material is discovered, electronic structure theory inevitably plays a fundamental role in unraveling its properties.

? Provides the foundations of the field of condensed matter physics
? An excellent supplementary text for classes on condensed matter physics/solid state physics
? Volume covers current work at the forefront
? Presentations are accessible to nonspecialists, with focus on underlying fundamentals
The goal of this Volume "e;Conceptual Foundations of Materials: A standard model for ground- and excited-state properties"e; is to present the fundamentals of electronic structure theory that are central to the understanding and prediction of materials phenomena and properties. The emphasis is on foundations and concepts. The Sections are designed to offer a broad and comprehensive perspective of the field. They cover the basic aspects of modern electronic structure approaches and highlight their applications to the structural (ground state, vibrational, dynamic and thermodynamic, etc.) and electronic (spectroscopic, dielectric, magnetic, transport, etc.) properties of real materials including solids, clusters, liquids, and nanostructure materials. This framework also forms a basis for studies of emergent properties arising from low-energy electron correlations and interactions such as the quantum Hall effects, superconductivity, and other cooperative phenomena. Although some of the basics and models for solids were developed in the early part of the last century by figures such as Bloch, Pauli, Fermi, and Slater, the field of electronic structure theory went through a phenomenal growth during the past two decades, leading to new concepts, understandings, and predictive capabilities for determining the ground- and excited-state properties of real, complex materials from first principles. For example, theory can now be used to predict the existence and properties of materials not previously realized in nature or in the laboratory. Computer experiments can be performed to examine the behavior of individual atoms in a particular process, to analyze the importance of different mechanisms, or just to see what happen if one varies the interactions and parameters in the simulation. Also, with ab initio calculations, one can determine from first principles important interaction parameters which are needed in model studies of complex processes or highly correlated systems. Each time a new material or a novel form of a material is discovered, electronic structure theory inevitably plays a fundamental role in unraveling its properties. Provides the foundations of the field of condensed matter physics An excellent supplementary text for classes on condensed matter physics/solid state physics Volume covers current work at the forefront Presentations are accessible to nonspecialists, with focus on underlying fundamentals

Cover 1
Contents 6
List of contributors 8
Preface 10
Chapter 1. Overview: A Standard Model of Solids 12
1. Background 12
2. The Hamiltonian 14
3. Empirical Models Lead the Way 14
4. Toward Ab Initio Calculations 16
5. Other Chapters in this Volume 17
Acknowledgments 18
References 19
Chapter 2. Predicting Materials and Properties: Theory of the Ground and Excited State 20
1. Introduction 20
2. The Ground State and Density Functional Formalism 22
3. Ab Initio Pseudopotentials 24
4. Electronic, Structural, Vibrational, and other Ground-State Properties 26
5. Electron–Phonon Interaction and Superconductivity 30
6. Excited States, Spectroscopic Properties, and Green’s Functions 34
7. Single-Particle Green’s Function and Electron Self-Energy 36
8. The GW Approximation 38
9. Quasiparticle Excitations in Materials 39
10. Electron–-Hole Excitations and the Bethe–Salpeter Equation 45
11. Optical Properties of Solids, Surfaces, and Nanostructures 48
12. Spectroscopic Properties of Nanotubes – A Novel 1D System 54
13. Summary and Perspectives 59
Acknowledgments 60
References 61
Chapter 3. Ab initio Molecular Dynamics: Dynamics and Thermodynamic Properties 66
1. Molecular Dynamics 66
2. Potential Energy Surface and Electronic Structure 69
3. Ab Initio Molecular Dynamics: The Car–Parrinello Approach 73
4. Numerical Implementation 81
5. An Illustrative Application: Liquid Water 86
6. Phase Diagrams from First Principles 93
7. Rare Events 96
8. Omissions, Perspectives and Open Issues 100
Acknowledgements 103
References 103
Chapter 4. Structure and Electronic Properties of Complex Materials: Clusters, Liquids and Nanocrystals 108
1. Introduction 108
2. The Electronic Structure Problem 109
3. Solving the Kohn–Sham Problem 110
4. Simulating Liquid Silicon 115
5. Properties of Confined Systems: Clusters 122
6. Quantum Confinement in Nanocrystals and Dots 138
Acknowledgments 144
References 145
Chapter 5. Quantum Electrostatics of Insulators: Polarization, Wannier Functions, and Electric Fields 150
1. Introduction 150
2. The Polarization Problem 152
3. Outline of Density-Functional Perturbation Theory 155
4. The Berry-Phase Theory of Polarization 158
5. Reformulation in Terms of Wannier Functions 162
6. The Quantum of Polarization and the Surface Charge Theorem 165
7. Treatment of Finite Electric Fields 168
8. Conclusions 172
References 172
Chapter 6. Electron Transport 176
1. Introduction 176
2. Conductivity 177
3. Conductance Versus Conductivity: The Point Contact 179
4. Kubo and Other Formulas 183
5. Supercurrent and Andreev Reflection 190
6. Bloch–Boltzmann theory 191
7. Kondo Effect and Resistivity Minimum in Metals 202
8. Dirty Fermi Liquids and Intrinsically Diffusive States 203
9. Weak Localization and Quantum Corrections 206
10. Neutron, Photoemission, and Infrared Spectroscopies 207
11. Semiconductors and the Metal/Insulator Transition 213
12. Coulomb Blockade 218
13. Coulomb Gap 220
Acknowledgments 222
References 223
Author Index 230
Subject Index 240

Erscheint lt. Verlag 20.9.2006
Sprache englisch
Themenwelt Kinder- / Jugendbuch Spielen / Lernen Lernen / Lernspiele
Schulbuch / Wörterbuch
Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Maschinenbau
ISBN-10 0-08-046457-2 / 0080464572
ISBN-13 978-0-08-046457-2 / 9780080464572
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich