Computing Machinery and Intelligence / Können Maschinen denken?. Englisch/Deutsch. [Great Papers Philosophie] (eBook)

Turing, Alan M. - zweisprachige Ausgabe - 19647
eBook Download: EPUB
2021 | 1. Auflage
202 Seiten
Reclam Verlag
978-3-15-961827-2 (ISBN)

Lese- und Medienproben

Computing Machinery and Intelligence / Können Maschinen denken?. Englisch/Deutsch. [Great Papers Philosophie] -  Alan M. Turing
Systemvoraussetzungen
6,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Alan M. Turing war der erste, der überhaupt die Frage stellte, ob Maschinen denken können. Seine Überlegungen dazu stießen die Tür für das Zeitalter moderner Computer auf. Seine bahnbrechende Arbeit, die jeder kennen sollte, der an Computern, Philosophie des Geistes und der Kognition, Psychologie oder allgemein an den Entwicklungen Künstlicher Intelligenz (KI) interessiert ist, folgt zeichengenau der 1950 in der Zeitschrift 'Mind' veröffentlichten Form. Die neue Übersetzung wird ausführlich kommentiert. Das Nachwort zeigt, inwiefern sich die dort formulierten Prinzipien bis heute bei der Entwicklung von KI niederschlagen. Die Reihe 'Great Papers Philosophie' bietet bahnbrechende Aufsätze der Philosophie: - Eine zeichengenaue, zitierfähige Wiedergabe des Textes (links das fremdsprachige Original, rechts eine neue Übersetzung). - Eine philosophiegeschichtliche Einordnung: Wie dachte man früher über das Problem? Welche Veränderung bewirkte der Aufsatz? Wie denkt man heute darüber? - Eine Analyse des Textes bzw. eine Rekonstruktion seiner Argumentationsstruktur, gefolgt von einem Abschnitt über den Autor sowie ein kommentiertes Literaturverzeichnis. E-Book mit Seitenzählung der gedruckten UB-Ausgabe sowie mit Originalpaginierung.

Alan Turing (23.6.1912 London - 7.6.1954 Wilmslow, Cheshire) - Mathematiker, Informatiker und Logiker - ist der Wegbereiter des digitalen Zeitalters. Nach dem Studium der Mathematik am King's College in Cambridge von 1931 bis 1934 veröffentlicht Turing 1936 im Alter von 24 Jahren mit dem Aufsatz 'On Computable Numbers with an Application to the Entscheidungsproblem' die Grundlage für den modernen Computer. Turing gelingt es 1941, mit der 'Turing-Bombe' eine Maschine zu entwickeln, mithilfe derer die bis dato als unentschlüsselbar geltende Enigma der Deutschen Wehrmacht dechiffriert werden kann. Turings Erfolg trägt maßgeblich zur Niederlage der Nazis bei und verkürzt den Krieg entscheidend. 1950 entwickelt Turing in seiner Abhandlung 'Computing Machinery and Intelligence' (dt. 'Können Maschinen denken?') das Konzept für Künstliche Intelligenz - und entwirft die heute berühmten Denkmodelle der Turingmaschine und des Turingtests. Mit 'The Chemical Basis of Morphogenesis' wendet Turing mathematische Logik auf die Biologie an und erkennt in der biologischen Musterbildung einen Code der Natur. 1952 wird Turing aufgrund seiner Homosexualität zu chemischer Sterilisation verurteilt. Er wird mit Östrogenen behandelt und depressiv. Zwei Jahre später begeht Turing Suizid. Erst in den 70er Jahren werden Turings Leistungen, die strengster Geheimhaltung unterlagen, nach und nach bekannt. 2009 - 55 Jahre nach Turings Tod - entschuldigt sich die britische Regierung öffentlich bei Turing und würdigt seine Verdienste. 2013 wird er von Elisabeth II. postum begnadigt. 2015 setzt Regisseur Morten Tyldum mit 'The Imitation Game' Alan Turing ein filmisches Denkmal. Unter dem Epochenbegriff der 'Turing-Galaxis' beschreiben einige medien- und kulturhistorische Modelle das heutige Zeitalter der digitalen elektronischen Vernetzung - in Anlehnung an Marshall McLuhans Begriff 'Gutenberg-Galaxis'. Die Übersetzer und Herausgeber: Achim Stephan, geb. 1955, und Sven Walter, geb. 1974, arbeiten beide als Professoren für Philosophie der Kognition an der Universität Osnabrück.

Alan Turing (23.6.1912 London – 7.6.1954 Wilmslow, Cheshire) – Mathematiker, Informatiker und Logiker – ist der Wegbereiter des digitalen Zeitalters. Nach dem Studium der Mathematik am King's College in Cambridge von 1931 bis 1934 veröffentlicht Turing 1936 im Alter von 24 Jahren mit dem Aufsatz "On Computable Numbers with an Application to the Entscheidungsproblem" die Grundlage für den modernen Computer. Turing gelingt es 1941, mit der "Turing-Bombe" eine Maschine zu entwickeln, mithilfe derer die bis dato als unentschlüsselbar geltende Enigma der Deutschen Wehrmacht dechiffriert werden kann. Turings Erfolg trägt maßgeblich zur Niederlage der Nazis bei und verkürzt den Krieg entscheidend. 1950 entwickelt Turing in seiner Abhandlung "Computing Machinery and Intelligence" (dt. "Können Maschinen denken?") das Konzept für Künstliche Intelligenz – und entwirft die heute berühmten Denkmodelle der Turingmaschine und des Turingtests. Mit "The Chemical Basis of Morphogenesis" wendet Turing mathematische Logik auf die Biologie an und erkennt in der biologischen Musterbildung einen Code der Natur. 1952 wird Turing aufgrund seiner Homosexualität zu chemischer Sterilisation verurteilt. Er wird mit Östrogenen behandelt und depressiv. Zwei Jahre später begeht Turing Suizid. Erst in den 70er Jahren werden Turings Leistungen, die strengster Geheimhaltung unterlagen, nach und nach bekannt. 2009 – 55 Jahre nach Turings Tod – entschuldigt sich die britische Regierung öffentlich bei Turing und würdigt seine Verdienste. 2013 wird er von Elisabeth II. postum begnadigt. 2015 setzt Regisseur Morten Tyldum mit "The Imitation Game" Alan Turing ein filmisches Denkmal. Unter dem Epochenbegriff der "Turing-Galaxis" beschreiben einige medien- und kulturhistorische Modelle das heutige Zeitalter der digitalen elektronischen Vernetzung – in Anlehnung an Marshall McLuhans Begriff "Gutenberg-Galaxis". Die Übersetzer und Herausgeber: Achim Stephan, geb. 1955, und Sven Walter, geb. 1974, arbeiten beide als Professoren für Philosophie der Kognition an der Universität Osnabrück.

Computing Machinery and Intelligence / Können Maschinen denken?

Zu dieser Ausgabe
Anmerkungen
Literaturhinweise
Nachwort
1 Wer war Turing?
2 Was macht Turing so bedeutend?
3 Rechnende Maschinen
4 Logische Maschinen
5 Von digitalen Universalrechnern zu denkenden Maschinen
5.1 Turingmaschinen und Turingberechenbarkeit
5.2 Turingmaschinen und das Entscheidungsproblem
5.3 Das Gehirn als Turingmaschine?
6 Turings Frage: Können Maschinen denken?
6.1 Der Turingtest
6.2 Denkende Maschinen: neun Einwände
6.3 Lernende Maschinen
7 Turings Wirkungsgeschichte
7.1 Der Loebner-Preis
7.2 Kritik am Turingtest
7.3 Intelligente Maschinen der Gegenwart
7.4 Ist denkenden Maschinen "alles schnuppe"?
7.5 Turing und Science-Fiction

[6]COMPUTING MACHINERY AND INTELLIGENCE


BY A. M. TURING


1. The Imitation Game.


I PROPOSE to consider the question, ‘Can machines think?’ This should begin with definitions of the meaning of the terms ‘machine’ and ‘think’. The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous. If the meaning of the words ‘machine’ and ‘think’ are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, ‘Can machines think?’ is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a definition I shall replace the question by another, which is closely related to it and is expressed in relatively unambiguous words.

The new form of the problem can be described in terms of a game which we call the ‘imitation game’. It is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a room apart from the other two. The object of the game for the interrogator is to determine which of the other two is the man and which is the woman. He knows them by [8]labels X and Y, and at the end of the game he says either ‘X is A and Y is B’ or ‘X is B and Y is A’. The interrogator is allowed to put questions to A and B thus:

C: Will X please tell me the length of his or her hair?

Now suppose X is actually A, then A must answer. It is A’s [434] object in the game to try and cause C to make the wrong identification. His answer might therefore be

‘My hair is shingled, and the longest strands are about nine inches long.’

In order that tones of voice may not help the interrogator the answers should be written, or better still, typewritten. The ideal arrangement is to have a teleprinter communicating between the two rooms. Alternatively the question and answers can be repeated by an intermediary. The object of the game for the third player (B) is to help the interrogator. The best strategy for her is probably to give truthful answers. She can add such things as ‘I am the woman, don’t listen to him!’ to her answers, but it will avail nothing as the man can make similar remarks.

We now ask the question, ‘What will happen when a machine takes the part of A in this game?’ Will the interrogator decide wrongly as often when the game is played like this as he does when the game is played between a man and a woman? These questions replace our original, ‘Can machines think?’

[10]2. Critique of the New Problem.


As well as asking, ‘What is the answer to this new form of the question’, one may ask, ‘Is this new question a worthy one to investigate?’ This latter question we investigate without further ado, thereby cutting short an infinite regress.

The new problem has the advantage of drawing a fairly sharp line between the physical and the intellectual capacities of a man. No engineer or chemist claims to be able to produce a material which is indistinguishable from the human skin. It is possible that at some time this might be done, but even supposing this invention available we should feel there was little point in trying to make a ‘thinking machine’ more human by dressing it up in such artificial flesh. The form in which we have set the problem reflects this fact in the condition which prevents the interrogator from seeing or touching the other competitors, or hearing their voices. Some other advantages of the proposed criterion may be shown up by specimen questions and answers. Thus:

Q: Please write me a sonnet on the subject of the Forth Bridge.

A: Count me out on this one. I never could write poetry.

Q: Add 34 957 to 70 764.

A: (Pause about 30 seconds and then give as answer) 105 621.

Q: Do you play chess?

[12]A: Yes. [435]

Q: I have K at my K1, and no other pieces. You have only K at K6 and R at R1. It is your move. What do you play?

A: (After a pause of 15 seconds) R-R8 mate.

The question and answer method seems to be suitable for introducing almost any one of the fields of human endeavour that we wish to include. We do not wish to penalise the machine for its inability to shine in beauty competitions, nor to penalise a man for losing in a race against an aeroplane. The conditions of our game make these disabilities irrelevant. The ‘witnesses’ can brag, if they consider it advisable, as much as they please about their charms, strength or heroism, but the interrogator cannot demand practical demonstrations.

The game may perhaps be criticised on the ground that the odds are weighted too heavily against the machine. If the man were to try and pretend to be the machine he would clearly make a very poor showing. He would be given away at once by slowness and inaccuracy in arithmetic. May not machines carry out something which ought to be described as thinking but which is very different from what a man does? This objection is a very strong one, but at least we can say that if, nevertheless, a machine can be constructed to play the imitation game satisfactorily, we need not be troubled by this objection.

It might be urged that when playing the ‘imitation game’ the best strategy for the machine may possibly be [14]something other than imitation of the behaviour of a man. This may be, but I think it is unlikely that there is any great effect of this kind. In any case there is no intention to investigate here the theory of the game, and it will be assumed that the best strategy is to try to provide answers that would naturally be given by a man.

3. The Machines concerned in the Game.


The question which we put in § 1 will not be quite definite until we have specified what we mean by the word ‘machine’. It is natural that we should wish to permit every kind of engineering technique to be used in our machines. We also wish to allow the possibility that an engineer or team of engineers may construct a machine which works, but whose manner of operation cannot be satisfactorily described by its constructors because they have applied a method which is largely experimental. Finally, we wish to exclude from the machines men born in the usual manner. It is difficult to frame the definitions so as to satisfy these three conditions. One might for instance insist that the team of [436] engineers should be all of one sex, but this would not really be satisfactory, for it is probably possible to rear a complete individual from a single cell of the skin (say) of a man. To do so would be a feat of biological technique deserving of the very highest praise, but we would [16]not be inclined to regard it as a case of ‘constructing a thinking machine’. This prompts us to abandon the requirement that every kind of technique should be permitted. We are the more ready to do so in view of the fact that the present interest in ‘thinking machines’ has been aroused by a particular kind of machine, usually called an ‘electronic computer’ or ‘digital computer’. Following this suggestion we only permit digital computers to take part in our game.

This restriction appears at first sight to be a very drastic one. I shall attempt to show that it is not so in reality. To do this necessitates a short account of the nature and properties of these computers.

It may also be said that this identification of machines with digital computers, like our criterion for ‘thinking’, will only be unsatisfactory if (contrary to my belief), it turns out that digital computers are unable to give a good showing in the game.

There are already a number of digital computers in working order, and it may be asked, ‘Why not try the experiment straight away? It would be easy to satisfy the conditions of the game. A number of interrogators could be used, and statistics compiled to show how often the right identification was given.’ The short answer is that we are not asking whether all digital computers would do well in the game nor whether the computers at present available would do well, but whether there are imaginable computers which would do well. But this is only the short answer. We shall see this question in a different light later.

[18]4. Digital Computers.


The idea behind digital computers may be explained by saying that these machines are intended to carry out any operations which could be done by a human computer. The human computer is supposed to be following fixed rules; he has no authority to deviate from them in any detail. We may suppose that these rules are supplied in a book, which is altered whenever he is put on to a new job. He has also an unlimited supply of paper on which he does his calculations. He may also do his multiplications and additions on a ‘desk machine’, but this is not...

Erscheint lt. Verlag 12.2.2021
Reihe/Serie Great Papers Philosophie
Great Papers Philosophie
Übersetzer Sven Walter, Achim Stephan
Verlagsort Ditzingen
Sprache englisch
Themenwelt Geisteswissenschaften Philosophie Philosophie der Neuzeit
Schlagworte Alan Mathison Turing • Analyse • Bücher Philosophie • Deutsch • Englisch • English • Erläuterung • Ethik • ethik texte • Ethik-Unterricht • gelb • gelbe bücher • great papers • Kann eine Maschine denken • Klassenlektüre • Können Maschinen denken • Lektüre • Originalsprache • Philosophie • Philosophie Computer • Philosophie Informatik • Philosophie Mathematik • philosophie oberstufe • philosophie texte • Philosophie-Unterricht • philosophische Bücher • Reclam Hefte • Reclams Universal Bibliothek • Schullektüre • selbstlernende Systeme • Textanalyse • Turing Algorithmus • Turing Deutsch • Turing Englisch Deutsch • Turing Enigma • Turing Informatik • Turing KI • Turing Künstliche Intelligenz • Turing Logik • Turing-Maschine • Turing Maschinen • Turing Original • Turing Philosophie • Turing Roboter • Turing-Test • Turing Übersetzung • Übersetzung • Zweisprachige Ausgabe
ISBN-10 3-15-961827-7 / 3159618277
ISBN-13 978-3-15-961827-2 / 9783159618272
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 1,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Bisher unbekannt und unveröffentlicht | Foucaults Geschichte der …

von Michel Foucault

eBook Download (2024)
Suhrkamp Verlag
29,99