Strategies for Team Science Success (eBook)

Handbook of Evidence-Based Principles for Cross-Disciplinary Science and Practical Lessons Learned from Health Researchers
eBook Download: PDF
2019 | 1st ed. 2019
XXV, 633 Seiten
Springer International Publishing (Verlag)
978-3-030-20992-6 (ISBN)

Lese- und Medienproben

Strategies for Team Science Success -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Collaborations that integrate diverse perspectives are critical to addressing many of our complex scientific and societal problems. Yet those engaged in cross-disciplinary team science often face institutional barriers and collaborative challenges.  Strategies for Team Science Success offers readers a comprehensive set of actionable strategies for reducing barriers and overcoming challenges and includes practical guidance for how to implement effective team science practices. More than 100 experts--including scientists, administrators, and funders from a wide range of disciplines and professions-- explain evidence-based principles, highlight state-of the-art strategies, tools, and resources, and share first-person accounts of how they've applied them in their own successful team science initiatives. While many examples draw from cross-disciplinary team science initiatives in the health domain, the handbook is designed to be useful across all areas of science. 

Strategies for Team Science Success will inspire and enable readers to embrace cross-disciplinary team science, by articulating its value for accelerating scientific progress, and by providing practical strategies for success. Scientists, administrators, funders, and others engaged in team science will also leave equipped to develop new policies and practices needed to keep pace in our rapidly changing scientific landscape. Scholars across the Science of Team Science (SciTS), management, organizational, behavioral and social sciences, public health, philosophy, and information technology, among other areas of scholarship, will find inspiration for new research directions to continue advancing cross-disciplinary team science. 




Kara L. Hall is Director of the Science of Team Science (SciTS) and the Theories Initiative at National Cancer Institute (NCI). Dr. Hall helped launch the SciTS field and provides on-going leadership to build an evidence base for effective team science approaches, translate the emerging SciTS knowledge into new policies and practices. She served as a member of The National Academies Committee on the Science of Team Science, which produced the report, Enhancing the Effectiveness of Team Science and as a founding board member of International Network for SciTS (INSciTS). At NCI, Dr. Hall supports cross-disciplinary research in areas including health behavior research, implementation science, systems science approaches, and healthcare teams. Prior to joining NCI, her research focused on advances in behavioral science methodology, applications of health behavior theory to multiple content areas, and the development of personalized interventions to enhance health and reduce disease. She received her Ph.D. at the University of Rhode Island in Psychology with specializations in clinical psychology, neuropsychology, and behavioral science.

Amanda L. Vogel is Global Health Evaluation Specialist at the Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute.  Dr. Vogel is a national expert in the SciTS field, conducting innovative empirical research on science teams; contributing to the conceptual and theoretical SciTS literature; and developing resources that help users apply practices for effective team science to their own initiatives. She has provided longstanding leadership for the Annual SciTS Conference and is Founding Membership Chair of the International Network for the Science of Team Science (INSciTS). Her expertise spans cross-disciplinary science teams, international and cross-institutional teams, and community-engaged scholarship.  Prior to working at the NCI, her research focused on service-learning in health professions education and community-based public health interventions for underserved populations. She earned her Master's degree in Health and Social Behavior at the Harvard T.H. Chan School of Public Health and PhD in Health Policy and Management at the Johns Hopkins Bloomberg School of Public Health.

Robert T. Croyle is Director of the Division of Cancer Control and Population Sciences and Interim Director of the Center for Global Health at the National Cancer Institute. He formerly served as the division's first Associate Director for Behavioral Research. Prior to joining NCI, he served on the faculty of the University of Utah, the University of Washington, and Williams College. His research has focused on psychological responses to risk factor information, including genetic test results. He is a recipient of the Distinguished Achievement Award of the American Society of Preventive Oncology and a Presidential Citation from the American Psychological Association. He received his Ph.D. in Social Psychology from Princeton University.  


Foreword 5
Acknowledgements 8
Contents 11
Contributors 16
Part I: Introduction 23
1: Introduction 24
1.1 Introduction 24
1.1.1 What Is Cross-Disciplinary Team Science? 25
1.1.2 What Leads to Success in Cross-Disciplinary Team Science? 27
1.1.3 What You Will Find in This Book 28
References 35
Part II: Integrative Science Teams 39
2: Disciplinary Diversity in Teams: Integrative Approaches from Unidisciplinarity to Transdisciplinarity 40
2.1 Introduction: The Challenge of Disciplinary Diversity 40
2.2 Conceptual Scaffolding 41
2.2.1 Modeling CDTS 41
2.2.2 Foundational Concepts for CDTS 43
2.3 Identifying Appropriate Experts 44
2.3.1 Disciplines and Experts 44
2.3.2 Heuristics for Identifying Required Expertise 45
2.4 Readiness 47
2.4.1 Team Readiness and Integrative Capacity 47
2.4.2 Intrinsic Team Readiness—Epistemic and Social Factors 49
2.4.3 Intrinsic Team Readiness—Technological Factors 50
2.5 Integration 52
2.5.1 What Is Integration? 52
2.5.2 What Is Integrated? 53
2.5.3 Degrees of Integration 55
2.5.4 How to Integrate 57
2.6 Conclusion 58
References 59
3: The Introduction of a New Domain into an Existing Area of Research: Novel Discoveries Through Integration of Sleep into Cancer and Obesity Research 66
3.1 Introduction 66
3.2 Energy Balance: Interdependent Influences of Physical Activity, Diet, and Sleep on Cancer 67
3.2.1 Sleep: An Emerging Risk Factor for Cancer 67
3.2.1.1 Sleep Deficiency vs. Sleep Health 68
3.2.2 Intersecting Pathways: Opportunities for Transdisciplinary Research Teams 71
3.3 Transdisciplinary Approaches to Understanding Physical Activity, Diet, Obesity, and Sleep and Their Relationships to Cancer 72
3.3.1 Catalyst: The Transdisciplinary Research on Energy Balance and Cancer (TREC) Program 74
3.3.1.1 Integrating Measures of Physical Activity, Sedentary Behavior, Sleep, and the Built Environment 75
3.3.1.2 Impact of Nocturnal Zeitgebers on Energy in TREC 75
3.3.1.3 Implementing Mobile Health Technology in the Nurses’ Health Study 3 76
3.4 Measurement Approaches: Opportunities for the Transdisciplinary Team 77
3.4.1 Measuring Energy Balance 77
3.4.2 Measuring Sleep 78
3.4.3 Challenges in Measuring Chronic Sleep and Energy Balance 79
3.4.4 Recent Advances in Technology to Measure Physical Activity, Diet, and Sleep 80
3.4.5 Future Directions 81
3.5 Conclusions 81
References 81
4: The Integration of Research from Diverse Fields: Transdisciplinary Approaches Bridging Behavioral Research, Cognitive Neuroscience, Pharmacology, and Genetics to Reduce Cancer Risk Behavior 87
4.1 Introduction 87
4.2 Development 88
4.3 Conceptualization 89
4.4 Implementation 90
4.5 Translation 92
4.6 Conclusions and Future Directions 94
References 95
5: The Intersection of Technology and Health: Using Human Computer Interaction and Ubiquitous Computing to Drive Behavioral Intervention Research 99
5.1 Introduction: Case Study of a Research Collaboration Between a Psychologist and Computer Scientist 99
5.2 Integrating Disciplinary Values 100
5.2.1 A Brief History of Computing and a Cautionary Tale 100
5.2.2 An Introduction to Human Computer Interaction (HCI) and User-Centered Design 101
5.2.3 Theories in Action: Case Studies from Our Work in Chronic Care Management 104
5.2.4 How Theory Improves Design 107
5.3 Integrating Behavioral Science and Computer Science: Heuristics for Successful Collaborations 108
5.4 Conclusion 110
References 111
6: Research Spanning Animal and Human Models: The Role of Serendipity, Competition, and Strategic Actions in Advancing Stroke Research 112
6.1 Team Innovation: Sex Matters in Stroke 113
6.2 Team Resources: Collaborate to Compete 115
6.3 Building Infrastructure for Team Science 116
6.4 Conclusion 117
References 118
7: Collaborating to Move the Laboratory Findings into Public Health Domains: Maxims for Translational Research 119
7.1 Temporal Discounting 120
7.2 Maxim 1: Surround Yourself with Smart People and Read Outside Your Research Area 121
7.3 Maxim 2: When You Run onto Something Interesting, Drop Everything Else and Study It 121
7.4 Maxim 3: Serendipity: The Art of Finding One Thing While Looking for Something Else 122
7.5 Maxim 4: Embrace New Techniques 123
7.6 Maxim 5: New Insights Beget New Paradigms 124
7.7 Maxim 6: “If You Want Truly to Understand Something, Try to Change It.” Kurt Lewin 124
7.8 Recommendations 125
References 126
Part III: Approaches for Expanding Engagement in Team Science 129
8: Methods for Coproduction of Knowledge Among Diverse Disciplines and Stakeholders 130
8.1 Introduction 130
8.2 Brokering Images of Knowledge 131
8.3 Td-net’s Toolbox for Coproducing Knowledge 132
8.4 Actor Constellation 133
8.5 Give-and-Take Matrix 134
8.6 Storywall 135
8.7 Conclusion 135
References 136
9: Engaging the Community: Community-Based Participatory Research and Team Science 137
9.1 Introduction 137
9.2 Background to Community-Based Participatory Research (CBPR) 138
9.3 Clinical Translational Science Award (CTSA) Practices in Community Engagement and Community-Engaged Research 140
9.4 Barriers to Engaging Community Stakeholder Perspectives Within CTSAs 141
9.5 Example of Community-Partnered Social and Behavioral Team Science 142
9.6 CBPR and Cross-Disciplinary Team Science: Current and Future Promise 144
9.7 Conclusion 145
References 146
10: Engaging the Patient: Patient-Centered Research 149
10.1 The Growing Mandate for Patient Engagement in Research 149
10.2 The Growing Mandate for Patient-Centered Health Care 151
10.3 PCORI and Patient Engagement in the Institute’s Research 153
10.4 PCORI’s Framework for Patient Engagement: The PCORI Engagement Rubric 153
10.4.1 Understanding Patient Engagement in Research and Evaluating Impact 154
10.5 Opportunities for Patient Engagement in the Research Process 154
10.6 How to Determine if Patient Engagement Is Meaningful 155
10.7 Patient Selection and Representation 156
10.7.1 Reciprocal Relationships 157
10.7.2 Patient Engagement and Value Added 157
10.8 PCORnet: A Use Case for Assessing and Improving Patient Engagement 158
10.9 Conclusion 159
References 160
11: Engaging the Practitioner: “But Wait, That’s Not All!”—Collaborations with Practitioners and Extending the Reasons You Started Doing Research in the First Place 162
11.1 My Journey to Team Science 163
11.2 Conceptualizing Researcher–Practitioner Collaborations: Useful Reframing 164
11.3 What Do You Get? Motivational Outcomes for the Basic Research Scientist Collaborating with Practitioners 166
11.4 Satisfying the Motives for the Applied Researcher or Practitioner 168
11.5 Advice for Getting Started: Points to Consider in Team Science Collaborations and How to Build Collaborative Relationships 169
11.6 Conclusions 170
References 170
12: Engaging the Public: Citizen Science 172
12.1 Overview 172
12.2 Introduction 172
12.3 Crowdsourcing, Microtasking, and Games: The Power of the Crowd in Data Analysis and Annotation 175
12.4 Unique Data and Insights Through Direct Contribution 175
12.5 The Potential for Citizen Science in Social and Behavioral Research 177
12.6 The Need for the Science of Citizen Science: What Works for What Kinds of Projects, and When? 177
12.7 Conclusion 179
References 179
Part IV: Individual Competencies and Team Characteristics 181
13: Individual-Level Competencies for Team Collaboration with Cross-Disciplinary Researchers and Stakeholders 182
13.1 Introduction 182
13.2 T-Shaped Collaborators: A Framework for Conceptualizing Boundary-Spanning Competencies 183
13.3 Team Science Readiness: Core Domains of Individual-Level Competencies 185
13.4 Values, Attitudes, and Beliefs 186
13.5 Habits of Mind 187
13.6 Knowledge-Based Competencies 189
13.7 Interpersonal Competencies 191
13.8 Scaffolding the Development of Individual-Level Competencies 194
13.9 Conclusion 195
References 195
14: The Role of Team Personality in Team Effectiveness and Performance 199
14.1 Introduction 199
14.2 The Five Factor Model of Personality 200
14.2.1 Extraversion 200
14.2.2 Conscientiousness 201
14.2.3 Agreeableness 201
14.2.4 Emotional Stability 201
14.2.5 Openness to Experience 202
14.3 Methodological Considerations and Recommended Future Directions 202
14.4 Considerations for Future Research on Personality Factors in Science Teams 203
14.5 Conclusions 205
References 205
15: Demographic Diversity in Teams: The Challenges, Benefits, and Management Strategies 207
15.1 Introduction 207
15.2 State of the Science 208
15.2.1 Defining Demographic Diversity and the Mechanisms Underlying Its Potential Impacts 208
15.2.2 Context Mediates the Impact of Demographic Diversity Matters in Science Teams 209
15.2.3 Why and How Demographic Diversity Matters in Science Teams 209
15.2.4 Demographic Patterns in Science Teams 210
15.3 Future Directions for Research on Demographic Diversity in Science Teams 211
15.3.1 Knowing the “Where, When, and How” of Demographic Diversity and Science Team Performance 212
15.3.2 Translating and Testing Interventions to Enhance Cultural Integration in Diverse Science Teams 212
15.4 Conclusion 213
References 213
16: The Added Value of Team Member Diversity to Research in Underserved Populations 216
16.1 Overview 216
16.2 Disparities in Health Across Diverse Populations 216
16.3 Planning Health Research in Underserved Populations 217
16.4 Recruiting and Following Hard-to-Reach Populations into Health Studies 219
16.5 SCCS Risk Factor Prevalences by Demographic Status 220
16.6 Lessons Learned 222
References 223
Part V: Team Formation 224
17: Team Assembly 225
17.1 Introduction 225
17.2 Chapter Roadmap 227
17.3 Types of Team Assembly 228
17.3.1 Staffed Teams 229
17.3.2 Self-Assembled Teams 229
17.4 Perspectives on Team Assembly 230
17.4.1 Compositional Perspective of Team Assembly 231
17.4.2 Relational Perspective of Team Assembly 234
17.4.3 Ecosystem Perspective of Team Assembly 236
17.5 Technology, Data, and Recommendation Algorithms in Team Assembly 238
17.5.1 Technology 239
17.5.2 Digital Trace Data 240
17.5.3 Recommendation Algorithms 240
17.6 Conclusion 241
References 241
18: Innovative Collaboration Formation: The National Academies Keck Futures Initiative 249
18.1 History and Background 249
18.2 Invitation 251
18.3 Preparation 253
18.4 Convene and Seed 253
18.5 Adapt and Evolve 255
18.6 Strengths and Limitations 257
References 258
19: Facilitating Cross-Disciplinary Interactions to Stimulate Innovation: Stand Up to Cancer’s Matchmaking Convergence Ideas Lab 259
19.1 Introduction 259
19.2 Convergence Science in Translational Cancer Research 260
19.3 Formulating the Convergence Ideas Lab Meeting Proposal 261
19.4 Participants/Meeting Structure 261
19.5 Project Proposals 263
19.6 Sequelae 265
19.7 Conclusion 266
References 266
20: Retreats to Stimulate Cross-Disciplinary Translational Research Collaborations: Medical University of South Carolina CTSA Pilot Project Program Initiative 268
20.1 Introduction 268
20.2 Design of the Retreats 269
20.3 Novel Scientific Collaborations and Projects That the Retreats Have Stimulated 270
20.4 Scientific Impacts 270
20.5 Challenges and Strategies for Success 271
References 272
Part VI: Team Functioning and Performance 273
21: Evidence-Based Principles and Strategies for Optimizing Team Functioning and Performance in Science Teams 274
21.1 State of the Science: Team Functioning and Performance 274
21.1.1 Key Concepts and the Review Structure 275
21.2 Work Teams and Challenges for Science Teams 276
21.2.1 The Nature of Work Teams 276
21.2.2 The Nature of Science Teams 278
21.3 An Integrative Theoretical Framework and Critical Conceptual Foci for Team Effectiveness 279
21.3.1 An Integrative Theoretical Framework 279
21.3.2 Critical Conceptual Foci for Team Effectiveness 281
21.4 A Review of Team Effectiveness Research 282
21.4.1 Inputs and Antecedents 282
21.4.2 Team Processes and Team Functioning 286
21.5 Aligning Team Processes: Practical Considerations and Research Recommendations 290
21.5.1 Critical Conceptual Foci Issues 291
21.5.2 Inputs/Antecedents Issues 291
21.5.3 Team Processes/Functioning Issues 292
21.6 Conclusion 294
References 295
22: Conflict Prevention and Management in Science Teams 299
22.1 Stages of Team Development 299
22.2 Minimizing Affective Conflict and Encouraging Productive Collision 300
22.3 Intrapersonal Influences on Conflict in Teams 300
22.4 Organizational Influences on Conflict in Teams 301
22.5 Practical Strategies to Prevent or Manage Conflict 302
22.6 Managing Conflict 305
22.7 Conclusion 305
References 305
23: Precollaboration Framework: Academic/Industry Partnerships: Mobile and Wearable Technologies for Behavioral Science 307
23.1 The Industry/Academic Partnership Framework 308
23.2 How to Use the Industry/Academic Translational Science Partnership Framework 308
23.3 Partnering Pillars 309
23.4 The Partnership Framework: A Case Study 311
Part VII: Leadership and Management of Teams 314
24: Leader Integrative Capabilities: A Catalyst for Effective Interdisciplinary Teams 315
24.1 Introduction 315
24.2 Background Literature 317
24.3 Theoretical Model 318
24.4 Leader Integrative Capabilities 319
24.4.1 Visioning 319
24.4.2 Reflexivity 320
24.4.3 Perspective-Seeking 321
24.4.4 Conflict Management 321
24.4.5 Coordination and Facilitating Connections 323
24.5 Performance Outcomes 324
24.6 Discussion 325
References 326
25: Organizational Perspective on Leadership Strategies for the Success of Cross-Disciplinary Science Teams 331
25.1 Introduction 331
25.2 Cross-Disciplinary Science Teams as New and Small Organizations 333
25.3 Strategic Planning Frameworks for Science Leaders 334
25.3.1 Strategy 1: Assessing the Environment for Cross-Disciplinary Science Teams 334
25.3.2 Strategy 2: Stakeholder Management 338
25.3.2.1 Identifying Stakeholders 338
25.3.2.2 Stakeholder Analysis 339
25.3.2.3 Developing a Communication Strategy 340
25.3.2.4 Developing a Communications Plan 342
25.3.3 Strategy 3: Fulfilling the Team’s Value Proposition 342
25.3.3.1 Value Chain Analysis 343
25.4 Conclusion 345
References 346
26: How Leadership Can Support Attainment of Cross-Disciplinary Scientific Goals 348
26.1 Introduction 348
26.2 Identifying Challenges 349
26.3 Initial Strategies 349
26.4 Building and Motivating a Team 350
26.5 Stimulating Transdisciplinary Interaction 351
26.6 Stimulating Idea Exchange Across Disciplines 352
26.7 Playmaking and Nurturing for TD Collaboration 356
26.8 Stimulating Productivity 357
26.9 Recognition and Rewards 358
26.10 Sustainability and Expansion Post Funding 358
26.11 Conclusions 359
References 360
27: The Interdisciplinary Executive Scientist: Connecting Scientific Ideas, Resources and People 363
27.1 Introduction 363
27.2 The Interdisciplinary Executive Scientist Role 366
27.2.1 Defining IES 366
27.2.2 IES Functions and Skills 367
27.2.2.1 Epistemic Functions 367
27.2.2.2 Managerial Functions 368
27.2.2.3 Emotional/Interpersonal Functions 369
27.3 Challenges and Inefficiencies 370
27.4 Next Steps 371
References 372
28: The Role of Research Development Professionals in Supporting Team Science 374
28.1 Credibility and Reputation of the Research Development Professional 375
28.2 Role of the Research Development Professional in Creating and Supporting Science Teams 376
28.2.1 Knowing Who Is Doing What 376
28.2.2 Hiring in Areas of Excellence 377
28.2.3 Building Cross-Disciplinary or Cross-Institutional Bridges 377
28.2.4 Discovery Slams 378
28.2.5 Regional Networking Events 379
28.3 Role of the Research Development Professional in Building and Supporting the Team Proposal Development Process 379
28.4 Metrics and Team Science the Role of Research Development Professionals
28.4.1 Teaming Process 381
28.4.2 Research Outcomes 382
28.4.3 Credit for Team Science 382
28.5 Example from the Field: The Center for Research, Excellence, and Diversity in Team Science (CREDITS) 383
28.6 Example from the Field: One Research Team’s Experience with Research Development and Team Science 384
28.6.1 Forming the Research Team 384
28.6.2 Provisional Resources/Budget 384
28.6.3 Developing the Research Ideas 385
28.6.4 Internal Proposal Review: The Red Team 385
28.6.5 The Decision 385
28.7 Conclusion 385
References 386
Part VIII: Facilitating Complex Team Science Initiatives 388
29: Best Practices for Researchers Working in Multiteam Systems 389
29.1 State of the Science: Best Practices for Working in Multiteam Systems 389
29.1.1 Conclusion #1: Many Science Teams Are Actually “Multiteam Systems” 390
29.1.2 Conclusion #2: Border Processes Such as Interteam Leadership and Boundary Spanning Communication Are Key Levers for Scientific Multiteam System Effectiveness 392
29.1.3 Conclusion #3: MTS Management Is a Balancing Act: Systems Require Both Integration Across and Differentiation Between Component Teams 394
29.1.3.1 Multiteam System Science 395
References 396
30: Developing a Shared Mental Model in the Context of a Center Initiative 399
30.1 The Life Cycle of Transdisciplinary Team-Based Research 399
30.2 The Center for Interdisciplinary Health Disparities Research 400
30.3 Developing a Shared Conceptual Model 401
30.4 Conclusions 403
References 404
31: The Value of Advisory Boards to Enhance Collaboration and Advance Science 405
31.1 The Transdisciplinary Research on Energetics and Cancer Initiative 406
31.2 Efforts at Collaboration at the Washington University in St. Louis TREC 407
31.3 Advisory Board Functions and Contributions 409
31.4 Conclusion 410
References 410
32: Designing and Developing Coordinating Centers as Infrastructure to Support Team Science 411
32.1 Research Background and Methods 412
32.2 What Does a Coordinating Center Do? 412
32.3 How Does the CC Infrastructure Design Impact the Scientific Outcomes of a Project? 414
32.3.1 Clarity of Roles and Responsibilities 414
32.3.2 Funding Structure 414
32.3.3 A Scientific Role for the CC 415
32.4 Conclusion 415
Reference 415
Part IX: Education, Training, and Professional Development for Cross-Disciplinary Team Science 416
33: Training to Be a (Team) Scientist 417
33.1 Introduction 417
33.2 Interdisciplinary Learning 419
33.2.1 A Brief History of Interdisciplinary Learning 419
33.2.2 Interdisciplinary Education in the Twentieth Century 421
33.2.3 Educating Individuals for Interdisciplinary Collaboration 422
33.2.4 Federal Programs in Support of Interdisciplinary Education 426
33.3 Addressing the Challenge of Interdisciplinary Teamwork 428
33.3.1 Coming to Terms with Terms 429
33.3.2 Understanding Team Competencies for Science Teams 430
33.3.3 Learning and Training for Team and Task Competencies 434
33.3.4 Training for Context-Driven Competencies 434
33.3.5 Training for Team-Contingent Competencies 434
33.3.6 Training for Task-Contingent Competencies 435
33.3.7 Training for Transportable Competencies 435
33.3.8 Summary 436
33.4 Conclusions 437
References 437
34: Continuing Professional Development for Team Science 441
34.1 Introduction 441
34.2 Bridging Technical and Content Expertise: The MD2K Project 442
34.3 Team Science Training Workshop: MD2K Team Launch 442
34.3.1 Pre-Workshop Training Activity 442
34.3.2 Opening Workshop Activity: Experiencing the Team Performance Advantage 443
34.3.3 Core Project-Related Workshop Activity: Eliciting Diverse Disciplinary Vocabulary and Points of View 445
34.3.4 Workshop Evolution: Beyond Team Assembly to Launch and Maturation 448
34.4 Summary 449
References 449
35: Training for Interdisciplinary Research in Population Health Science 450
35.1 Introduction 450
35.2 A Model: Robert Wood Johnson Health & Society Scholars
35.3 A Vision for Future Training in Cross-disciplinary Population Health Science 453
35.3.1 Key Competencies 454
35.3.2 Critical Elements of Training 455
35.3.3 Institutional Contexts and Resources 457
35.3.4 Diversity 458
35.3.5 The Training Pipeline 458
35.3.6 A Recommended Model 460
35.4 Conclusion 461
References 461
36: Cross-Disciplinary Team Science with Trainees: From Undergraduate to Postdoc 463
36.1 Introduction 463
36.2 Team Science with Undergraduates 464
36.3 Team Science with Graduate Students 465
36.4 Team Science with Postdoctoral Fellows 467
36.5 Concluding Thoughts 467
References 468
Part X: Institutional Influences 469
37: Restructuring Research Universities to Advance Transdisciplinary Collaboration 470
37.1 Institutional Design to Accommodate Transdisciplinarity and Team Research 472
37.2 Historical Perspective on the Relevance of Inter- and Transdisciplinarity to Team Research 473
37.3 Further Perspective on Transdisciplinarity and Team Research 474
37.4 A Case Study in the Reconceptualization of a Major Research University 476
37.5 Toward the Institutional Accommodation of Transdisciplinarity and Team Science 479
References 480
38: Building a Cross-Disciplinary Culture in Academia Through Joint Hires, Degree Programs, and Scholarships 482
38.1 Introduction 482
38.2 Strategic Planning for Team Science Topics 483
38.2.1 Team Science Scholarships 483
38.2.2 Challenges 484
38.3 Joint Faculty Hire Framework 484
38.3.1 Process for Multi-department Hires 484
38.3.2 Challenges 485
38.4 Joint Degree Programs 485
38.4.1 Clinical Psychology 485
38.4.2 Public Health 486
38.4.3 Interdisciplinary Research on Substance Use 486
38.4.4 Challenges 487
References 487
39: Broadening our Understanding of Scientific Work for the Era of Team Science: Implications for Recognition and Rewards 488
39.1 Introduction 488
39.2 Shifting the Culture of the Scientific Enterprise to Align with Cross-disciplinary and Team Science Approaches 490
39.3 Revising Promotion and Tenure Policies to Recognize Scientific Activities Essential to Team Science 491
39.4 The Range of Key Scientific Activities for Effective Team Science 493
39.5 Implications for Recognizing a Range of Scientific Roles in Team Science 495
39.6 Broader Implications 496
39.7 Summary and Conclusions 497
References 498
40: The Interrelationship of People, Space, Operations, Institutional Leadership, and Training in Fostering a Team Approach in Health Sciences Research at the University of Saskatchewan 501
40.1 Introduction 501
40.2 People 502
40.2.1 Working with the Faculty to Embrace a Team Science Culture 502
40.2.2 Communicating a New Research Paradigm with the Faculty 503
40.2.3 Faculty Recognition and Reward in a Team Environment 503
40.2.4 Setting Research Expectations in a Team Environment 504
40.3 Operations 504
40.3.1 Aligning Researcher Cluster Requirements in Open Labs Designed to Encourage Sustained Collaboration 504
40.3.2 Lab Managers at the Center of a New Operational Framework to Support Team Science 505
40.4 Space 505
40.4.1 Planning a Facility to Foster Team Science 505
40.4.2 Enhancing Interdisciplinary Health Research 506
40.4.3 Shared Research Laboratories 506
40.4.4 Student/Faculty Interactions 507
40.5 Institutional Leadership 510
40.5.1 Aligning Processes, Procedures, and Policies with the Message That Team Science Is Valued 510
40.6 Training and Education: An Essential Element for Moving into the Future 511
41: The Development of a New Interdisciplinary Field: Active Living Research—A Foundation-Supported Interdisciplinary Research Funding Program 515
41.1 Introduction 515
41.2 Building and Nurturing an Interdisciplinary Field: Active Living Research 516
41.2.1 Origins and Goals of Active Living Research 516
41.2.2 Active Living Research’s Interdisciplinary Approach 516
41.2.3 Organization and Leadership of Active Living Research 517
41.2.4 Strategies for Recruiting Diverse Disciplines to Research Teams 517
41.2.5 Supporting Development of Interdisciplinary Teams 518
41.2.6 Supporting Effective Functioning of Interdisciplinary Teams 518
41.2.7 Engaging Research Teams in Research Translation 519
41.2.8 Leadership Development and Recognition 520
41.3 Perspectives on Team Science from One Active Living Research Grantee 521
41.3.1 Leadership Development 522
41.3.2 Experiences in and Reflections on Team Science and Interdisciplinary Research 523
41.3.2.1 Proposal Stage and Team Composition 523
41.3.2.2 Study Implementation 524
41.3.2.3 Dissemination Phase 525
41.3.3 Benefits of Team Science and Interdisciplinary Research 525
41.3.4 Lessons from These Experiences in Team Science 525
41.4 Conclusion 526
References 528
Part XI: Technological Supports for Team Science 530
42: The Power of Research Networking Systems to Find Experts and Facilitate Collaboration 531
42.1 Introduction 531
42.1.1 Distinguishing Research Networking Systems from Other Collaboration Tools 531
42.1.2 Chapter Overview 532
42.2 Profiles Research Networking Software (Profiles RNS) 533
42.2.1 Origins of a Research Networking System 533
42.2.2 Passive and Active Networks 535
42.2.3 Discovering and Visualizing Networks 535
42.3 Use Cases for Research Networking 537
42.3.1 University Relations Office: Publicize Faculty and Their Research 538
42.3.2 University Library: Provide Access to the Scholarly Works of Faculty 538
42.3.3 University Provost Office: Facilitate Cross-Discipline Initiatives 539
42.3.4 Using Research Networking to Help Patients 541
42.3.5 Using Research Networking for Reporting and Analysis 542
42.3.6 Cross-Institution Research Networking Applications 542
42.4 Guide to Success 544
42.4.1 Questions to Consider Before Implementing a Research Networking System 544
42.4.1.1 What Problem Is My Organization Trying to Solve? 544
42.4.1.2 What Other Faculty Information Websites Already Exist at My Organization? 544
42.4.1.3 Who Should Be the Business Owner? 544
42.4.1.4 How Should We Think About Governance? 545
42.4.1.5 What Factors Are Important in Selecting a Research Networking Product? 545
42.4.1.6 Who Should Lead the Implementation? 545
42.4.1.7 Should We Implement the Research Networking Website Ourselves or Hire a Vendor? 545
42.4.1.8 How Much Do RNSs Cost? 546
42.4.1.9 How Do We Estimate a Return on Investment? 546
42.4.1.10 Do RNSs Reduce Administrative Burden on Investigators? 546
42.4.2 Questions to Consider While Implementing a Research Networking System 546
42.4.2.1 Which People Should Have Profiles in the Website? 546
42.4.2.2 Should There Be an Opt-out or Opt-in Policy? 547
42.4.2.3 How Will Human Resources Data About Investigators Be Obtained on a Regular Basis? 547
42.4.2.4 What Other Types of Data Need to Be Included in the Website Before Launching It? 547
42.4.2.5 Do We Have Permission to Use the Data? 547
42.4.2.6 How Often Do the Data Need to Be Updated? 547
42.4.2.7 How Do We Deal with Incorrect or Missing Data? 548
42.4.2.8 Should the Website Be Public or Private? 548
42.4.2.9 What Should the URL of the Website Be? 548
42.4.3 Questions to Consider When Launching a Research Networking System and Beyond 548
42.4.3.1 What Is a Good Rollout Strategy? 548
42.4.3.2 How Do We Encourage Use and Adoption of the Website? 548
42.4.3.3 How Do We Evaluate Success? 549
42.4.3.4 When Should We Upgrade to the Latest Version of the Software? 549
42.4.3.5 How Do We Connect to Cross-Institution Networks? 549
42.4.3.6 What Opportunities Are There to Learn More About Research Networking? 549
42.5 The Current State of Research Networking and Future Directions 550
References 551
43: Strategies for Success in Virtual Collaboration: Structures and Norms for Meetings, Workflow, and Technological Platforms 553
43.1 Introduction 553
43.2 Structuring Work 555
43.3 Technological Platforms and Associated Norms 557
43.4 Meetings and Associated Norms 559
43.5 Conclusion 561
References 563
44: Open Sharing of Behavioral Research Datasets: Breaking Down the Boundaries of the Research Team 565
44.1 Introduction 565
44.2 Behavior and Public Health 566
44.2.1 Making Video a Pillar of Social and Behavioral Research 566
44.2.2 Video Facilitates Transparency 567
44.2.3 Video Poses Challenges to Sharing, but These Barriers Can Be Overcome 567
44.2.4 Federal and Journal Data-Sharing Policies Largely Ignore Video 568
44.3 Databrary Facilitates Sharing and Reuse of Research Video 568
44.3.1 Databrary’s Policies Enable Sharing of Identifiable Data 569
44.3.2 Databrary Overcomes Technical Barriers to Video Data Sharing 569
44.3.3 Databrary’s Design Overcomes Practical Barriers to Sharing 570
44.3.4 Video Coding Tools Enable Discovery 570
44.4 Conclusions 571
References 572
Part XII: Integration of Team Science Evidence to Guide Practice 574
45: Comprehensive Collaboration Plans: Practical Considerations Spanning Across Individual Collaborators to Institutional Supports 575
45.1 Introduction 575
45.1.1 The Collaboration Planning Approach 576
45.1.2 Origins of the Collaboration Planning Approach 577
45.1.3 Collaboration Plans Are Critical for Complex Teams 578
45.2 Ten Key Components to Address in a Collaboration Plan 579
45.2.1 Rationale for Team Approach and Team Composition 579
45.2.1.1 Team Approach 579
45.2.1.2 Team Size and Composition 579
45.2.2 Collaboration Readiness 580
45.2.2.1 Individual Collaboration Readiness 580
45.2.2.2 Team Collaboration Readiness 580
45.2.2.3 Institutional Collaboration Readiness 581
45.2.3 Technological Readiness 581
45.2.3.1 Scientific Processes 581
45.2.3.2 Collaborative Processes 581
45.2.4 Team Functioning 582
45.2.5 Communication and Coordination 583
45.2.5.1 Communication 584
45.2.5.2 Coordination 584
45.2.6 Leadership, Management, and Administration 584
45.2.6.1 Leadership 584
45.2.6.2 Management 585
45.2.6.3 Administration 585
45.2.7 Conflict Prevention and Management 585
45.2.7.1 Conflict Prevention 586
45.2.7.2 Conflict Management 586
45.2.8 Training 586
45.2.8.1 Training Content 587
45.2.8.2 Training Approaches 587
45.2.8.3 Training Format 587
45.2.9 Quality Improvement Activities 588
45.2.10 Budget/Resource Allocation 588
45.3 How to Use a Collaboration Plan 589
45.3.1 The Role of Academic Institutions 593
45.3.2 Role of Collaboration Plans in the Peer Review of Grant Applications and Development of Funding Initiatives 594
45.4 Conclusion 595
References 596
Correction to: Strategies for Team Science Success 601
Correction to: K. L. Hall et al. (eds.), Strategies for Team Science Success, https://doi.org/10.1007/978-3-030-20992-6 601
Index 602

Erscheint lt. Verlag 13.11.2019
Zusatzinfo XXV, 633 p. 80 illus., 54 illus. in color.
Sprache englisch
Themenwelt Sachbuch/Ratgeber Gesundheit / Leben / Psychologie Krankheiten / Heilverfahren
Geisteswissenschaften
Medizin / Pharmazie Medizinische Fachgebiete Psychiatrie / Psychotherapie
Schlagworte behavioral medicine research teams • behavioral randomized clinical trials • Cancer Research • citizen science and IDBR • combined behavioral and pharmacology trials • Community-Based Participatory Research • evaluating team processes • evidence-based behavioral medicine • interdisciplinary behavioral science research • large scale integration • obesity research • science policy trends • Sleep Research • team-based science • virtual behavioral health research collaboration
ISBN-10 3-030-20992-X / 303020992X
ISBN-13 978-3-030-20992-6 / 9783030209926
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Diagnostik - Epidemiologie - Therapie

von Sebastian Schulz-Stübner; Markus Dettenkofer …

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
46,99
Erste Anzeichen erkennen. Die Fülle der Therapien nutzen. Dauerhaft …

von Ulrich Hegerl; Svenja Niescken

eBook Download (2022)
Trias (Verlag)
21,99