Peirce’s Philosophy of Notation
Seiten
2024
De Gruyter (Verlag)
978-3-11-064950-5 (ISBN)
De Gruyter (Verlag)
978-3-11-064950-5 (ISBN)
Peirceana provides a forum for the best current work on Peirce worldwide. Besides monographs, the series publishes thematically unified anthologies and edited volumes with a defined topical focus and untranslated English selections of Peirce’s writings.
In 1885 Charles S. Peirce coined the phrase "philosophy of notation" to mean the illustration of the principles which underlie all logical notations. This edited collection gathers theoretical, scientific and historical contributions from leading Peirce specialists that advance our understanding of fundamental ideas on formal languages, diagrammatic representations, icons, logical and mathematical reasoning, and their history.
In 1885 Charles S. Peirce coined the phrase "philosophy of notation" to mean the illustration of the principles which underlie all logical notations. This edited collection gathers theoretical, scientific and historical contributions from leading Peirce specialists that advance our understanding of fundamental ideas on formal languages, diagrammatic representations, icons, logical and mathematical reasoning, and their history.
Francesco Bellucci, University of Bologna, Italy; Ahti-Veikko Pietarinen, Nazarbayev University, Nur-Sultan, Kazakhstan.
Erscheinungsdatum | 10.05.2022 |
---|---|
Reihe/Serie | Peirceana |
Zusatzinfo | 30 b/w ill. |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 155 x 230 mm |
Themenwelt | Geisteswissenschaften ► Philosophie ► Philosophie der Neuzeit |
Schlagworte | Charles S. Peirce • Diagrammatic Reasoning • Logic and philosophy of logic • Logik • Peirce, Charles S. • Philosophie der Mathematik • Philosophy of mathematics and mathematical practic • Philosophy of mathematics and mathematical practice |
ISBN-10 | 3-11-064950-0 / 3110649500 |
ISBN-13 | 978-3-11-064950-5 / 9783110649505 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich