State-Trace Analysis (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XIII, 123 Seiten
Springer International Publishing (Verlag)
978-3-319-73129-2 (ISBN)

Lese- und Medienproben

State-Trace Analysis - John C. Dunn, Michael L. Kalish
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides an introduction to the theory, method, and practice of State-Trace Analysis (STA), and includes a detailed tutorial on the statistical analysis of state-trace designs.  The book offers instructions on how to perform state-trace analysis using the authors' own publicly-available software in both Matlab and R. 

The book begins by discussing the general framework for thinking about the relationships between independent variables, latent variables, and dependent variables. Subsequent chapters provide a software package that can be used to fit state-trace models as well as additional designs and examples. The book concludes with a discussion on potential extensions of STA and additional aspects of its application. 

State-Trace Analysis will be of interest to researchers and graduate students working in experimental, applied, and cognitive psychology. 



John C. Dunn, BA, Ph.D., is an Emeritus Professor in the School of Psychological Science at the University of Western Australia. Dr Dunn's research has focused on the application of mathematical models to recognition memory, decision making, reasoning, categorization, and eyewitness testimony. He has published over 100 papers in numerous journals including Psychological Review, Proceedings of the National Academy of Science, and the Journal of Experimental Psychology: Learning, Memory, and Cognition.

Michael L. Kalish, M.S., Ph.D., is a Professor in the Department of Psychology at Syracuse University. He has published in numerous journals, including: Psychological Review, Cognitive Science, and several sections of the Journal of Experimental Psychology. Dr. Kalish's research involves describing the cognitive mechanisms responsible for the nature of human learning and memory, with a particular focus on categorization and dimensional attention.

John C. Dunn, BA, Ph.D., is an Emeritus Professor in the School of Psychological Science at the University of Western Australia. Dr Dunn’s research has focused on the application of mathematical models to recognition memory, decision making, reasoning, categorization, and eyewitness testimony. He has published over 100 papers in numerous journals including Psychological Review, Proceedings of the National Academy of Science, and the Journal of Experimental Psychology: Learning, Memory, and Cognition. Michael L. Kalish, M.S., Ph.D., is a Professor in the Department of Psychology at Syracuse University. He has published in numerous journals, including: Psychological Review, Cognitive Science, and several sections of the Journal of Experimental Psychology. Dr. Kalish's research involves describing the cognitive mechanisms responsible for the nature of human learning and memory, with a particular focus on categorization and dimensional attention.

Part I: Theory.- Chapter 1. The Logic of State-Trace Analysis.- Chapter 2. Monotonicity.- Chapter 3. Functional Dependence.- Part II: Application.- Chapter 4. Statistical Methodology.- Chapter 5. Mixed Designs with Continuous Dependent Variables.- Chapter 6. Independent Observations with Binary Dependent Variables.- Chapter 7. More Examples.- Part III: Further Topics.- Chapter 8. Bayesian Approaches.- Chapter 9. Final Comments.- Appendix.- References. 

Erscheint lt. Verlag 8.2.2018
Reihe/Serie Computational Approaches to Cognition and Perception
Computational Approaches to Cognition and Perception
Zusatzinfo XIII, 123 p. 37 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Geisteswissenschaften Psychologie
Schlagworte Advanced statistical methods in behavioral science • Coupled monotonic regression • Differential influence • Dimensional theory • Functional dissociation • Non-removable interactions • Reversed association • Selective influence • Signed difference analysis • State-trace analysis
ISBN-10 3-319-73129-7 / 3319731297
ISBN-13 978-3-319-73129-2 / 9783319731292
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich