Advanced Materials for the Conservation of Stone (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XII, 332 Seiten
Springer International Publishing (Verlag)
978-3-319-72260-3 (ISBN)

Lese- und Medienproben

Advanced Materials for the Conservation of Stone -
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book identifies novel advanced materials that can be utilized as protective agents for the preservation of stone. The innovative solutions to stone conservation presented here result in increased sustainability, reduced environmental impact, and increased social and economic benefits. It provides an overview of recent trends and progress in advanced materials applied to stone protection. It also explores the scientific principles behind these advanced materials and discusses their applications to diff erent types of stone preservation efforts. Essential information as well as knowledge on the availability and applicability of advanced nanostructured materials is also provided, with focus placed on the practical aspects of stone protection. Th e book highlights an interdisciplinary eff ort regarding novel applications of nanostructured materials in the advancement of stone protection. It provides insight towards forthcoming developments in the fi eld. Advanced nanostructured materials are designed and developed with the aim of being chemically, physically, and mechanically compatible with stone. Advanced materials for stone conservation that are characterized by several functional properties are considered in this book. These include the physico-chemical, protective, and morphological properties, eco-toxicity, and mechanisms of degradation. The authors present a thorough overview of cutting-edge discoveries, detailed information on recent technological developments, breakthroughs in novel nanomaterials, utilization strategies for applications in cultural heritage, and the current status and future outlook of the topic to address a wide range of scientific communities.



Dr. Majid Hosseini has earned both his Ph.D. and M.S. degrees in Chemical Engineering from The University of Akron in Ohio, United States. He has also completed an MSE degree in Manufacturing Engineering at UTRGV in Texas, USA, and a bachelor's degree in Chemical Engineering at Sharif University of Technology in Tehran, Iran. He has edited high caliber books, book chapters, authored multiple research articles, and has co-invented patents application technologies. He has served as a key speaker at national and international conferences and has been actively engaged in technology development. Dr. Hosseini's research interests, expertise, and experiences are diverse, ranging from smart bio/nanomaterials, smart polymers and coatings, nanoparticles, bio/nanotechnology, to bioprocess engineering and development, biomanufacturing, biofuels and bioenergy, and sustainability. Dr. Hosseini works at The University of Texas Rio Grande Valley in Edinburg, Texas, USA.


Dr. Ioannis Karapanagiotis has obtained his Ph.D. in Materials Science and Engineering from the University of Minnesota, United States, and his Diploma in Chemical Engineering from the Aristotle University of Thessaloniki, Greece. He serves as a member in Editorial Boards and reviewer in several journals (more than 70), and he has published multiple research papers (more than 130) in peer reviewed journals, books and conference proceedings. Dr. Karapanagiotis specializes in interfacial engineering and its applications on the protection and conservation of the cultural heritage, and in the physicochemical characterization and analysis of cultural heritage materials which are found in historic monuments, paintings, icons, textiles, manuscripts. Dr. Karapanagiotis is an Associate Professor and Head of the Department of Management and Conservation of Ecclesiastical Cultural Heritage Objects, University Ecclesiastical Academy of Thessaloniki, Greece. 

Dr. Majid Hosseini has earned both his Ph.D. and M.S. degrees in Chemical Engineering from The University of Akron in Ohio, United States. He has also completed an MSE degree in Manufacturing Engineering at UTRGV in Texas, USA, and a bachelor’s degree in Chemical Engineering at Sharif University of Technology in Tehran, Iran. He has edited high caliber books, book chapters, authored multiple research articles, and has co-invented patents application technologies. He has served as a key speaker at national and international conferences and has been actively engaged in technology development. Dr. Hosseini’s research interests, expertise, and experiences are diverse, ranging from smart bio/nanomaterials, smart polymers and coatings, nanoparticles, bio/nanotechnology, to bioprocess engineering and development, biomanufacturing, biofuels and bioenergy, and sustainability. Dr. Hosseini works at The University of Texas Rio Grande Valley in Edinburg, Texas, USA.Dr. Ioannis Karapanagiotis has obtained his Ph.D. in Materials Science and Engineering from the University of Minnesota, United States, and his Diploma in Chemical Engineering from the Aristotle University of Thessaloniki, Greece. He serves as a member in Editorial Boards and reviewer in several journals (more than 70), and he has published multiple research papers (more than 130) in peer reviewed journals, books and conference proceedings. Dr. Karapanagiotis specializes in interfacial engineering and its applications on the protection and conservation of the cultural heritage, and in the physicochemical characterization and analysis of cultural heritage materials which are found in historic monuments, paintings, icons, textiles, manuscripts. Dr. Karapanagiotis is an Associate Professor and Head of the Department of Management and Conservation of Ecclesiastical Cultural Heritage Objects, University Ecclesiastical Academy of Thessaloniki, Greece. 

Preface 5
Contents 9
Chapter 1: Superhydrophobic Coatings for the Protection of Natural Stone 13
1.1 Introduction 13
1.2 Superhydrophobicity: A Brief Review 14
1.3 Coatings of Enhanced Hydrophobicity and Water Repellency for the Protection of Natural Stone 18
1.4 Case Study: Superhydrophobic and Water-Repellent Polysiloxane-Nanoparticle Composite Coatings for the Protection of Sandstone and Marble 24
1.4.1 Superhydrophobicity and Water Repellency on Sandstone 25
1.4.2 Superhydrophobicity and Water Repellency on Marble 28
1.4.3 Waterborne Superhydrophobic and Water-Repellent Coatings 30
1.4.4 Superhydrophobic and Water-Repellent Coatings from Inherent Hydrophilic Materials 30
1.4.5 Superoleophobic and Oil-Repellent Coatings 32
1.4.6 Other Properties of Superhydrophobic and Water-­Repellent Polysiloxane-Nanoparticle Coatings 33
1.5 Conclusion 35
References 36
Chapter 2: Advanced Conservation Methods for Historical Monuments 38
2.1 Introduction 38
2.2 Study of Mixed Mode Fracture of Marble/Adhesive Interfaces 40
2.2.1 Materials 41
2.2.1.1 Acrylic Resins 41
2.2.1.2 Polyvinyl Acetate Resins 41
2.2.1.3 Polyester Resins 41
2.2.1.4 Epoxy Resins 42
2.2.2 Experimental Procedures 42
2.2.3 Interfacial Fracture Testing 42
2.2.4 Modeling 44
2.2.5 Results and Discussion 45
2.2.5.1 Bond Line Width 45
2.2.5.2 Fracture Toughness 45
2.2.5.3 Crack/Microstructure Interactions 45
2.2.5.4 Modeling 48
2.2.5.5 Implications 49
2.3 Study of Subcritical Crack Growth in Adhesive/Marble Interfaces 49
2.3.1 Materials 49
2.3.2 Experimental Procedure 50
2.3.3 Interfacial Creep Crack Growth 50
2.3.4 Modeling 50
2.3.4.1 Interfacial Fracture Mechanics 50
2.3.4.2 Interfacial Crack Growth 51
2.3.5 Results and Discussion 51
2.3.5.1 Interfacial Crack Growth Rates 51
2.3.5.2 Crack Growth Mechanisms 52
2.3.5.3 Crack Growth and Life Predictions 54
2.3.5.4 Implications 55
2.4 Study of Pinning Materials for Join Repair 55
2.4.1 Materials and Methods 55
2.4.1.1 Experimental Method 56
2.4.1.2 Numerical Analysis of Join Repair 57
2.4.2 Experimental Results 57
2.4.2.1 Dry Join Repair Specimens 57
2.4.2.2 Wet Join Repair Specimens 60
2.4.3 Simulation Results 60
2.4.3.1 Dry Join Repair Simulation 60
2.4.3.2 Wet Join Repair Simulation 64
2.5 Conclusion 64
References 65
Chapter 3: The Protection of Marble Surfaces: The Challenge to Develop Suitable Nanostructured Treatments 67
3.1 Introduction 67
3.2 TiO2 Nanoparticle-Based Materials for the Protection of Marble and Compact Limestones 72
3.2.1 Photocatalytic Activity of Nano-TiO2 Semiconductor 72
3.2.2 Applications in the Field of Architectural Heritage 73
3.2.3 Research Open Challenges and Future Perspectives for Nano-TiO2 Treatments 75
3.3 Application of Nano-TiO2 Dispersions and Nanocomposites: In Lab and In Situ Experiences 76
3.3.1 Application of Nano-TiO2 Dispersions on Carrara Marble 76
3.3.2 Application of TiO2-Based Nanocomposites in Lab on Carrara Marble 79
3.3.3 On-Site Evaluation of the Effectiveness of Nanostructured Treatments 82
3.4 Conclusion 84
References 84
Chapter 4: A Hybrid Consolidant of Nano-­Hydroxyapatite and Silica Inspired from Patinas for Stone Conservation 89
4.1 Introduction 89
4.2 Experimental Section 91
4.2.1 Materials 91
4.2.2 Synthesis of Nanocomposites 91
4.2.3 Evaluation of Effectiveness on Calcareous Stones 92
4.2.4 Characterization 93
4.2.5 Limestone Treated with the Nanocomposites 94
4.3 Results and Discussion 94
4.3.1 Nanocomposites 94
4.3.2 Performance Evaluation of the Nanocomposites 99
4.4 Conclusion 102
References 103
Chapter 5: Compatible Mortars for the Sustainable Conservation of Stone in Masonries 106
5.1 Introduction 106
5.2 Compatibility and Performance Through a Reverse Engineering Methodological Approach 108
5.3 Application of Methodological Approach: Evaluation of Restoration Mortar Compatibility and Performance 113
5.3.1 The Byzantine Monastery of Kaisariani in Athens, Greece 114
5.3.2 The Traditional Bridge of Plaka in Epirus, Greece 119
5.3.3 The Holy Aedicule of the Holy Sepulchre in Jerusalem 123
5.4 Conclusion 127
References 129
Chapter 6: Inorganic Nanomaterials for the Consolidation and Antifungal Protection of Stone Heritage 133
6.1 Introduction 133
6.2 Nanomaterials 135
6.2.1 Synthesis Methods 135
6.2.2 Characterization Techniques for Nanomaterials 136
6.3 Nanomaterials for the Stone Heritage Preservation: Factors Influencing Their Effectiveness 138
6.3.1 Consolidating Products 138
6.3.2 Antifungal Protective Coatings 145
6.4 Conclusion 150
References 151
Chapter 7: Nanomaterials for the Consolidation of Stone Artifacts 158
7.1 Inorganic Nanomaterials 158
7.2 Composite Nanomaterials 170
7.3 Conclusion 176
References 177
Chapter 8: Testing Efficiency of Stone Conservation Treatments 181
8.1 Introduction 181
8.2 Testing Facilities and Procedures for In Situ Determining Representative Material Characteristics 186
8.3 Conclusion 187
References 189
Chapter 9: Challenges of Alkoxysilane-Based Consolidants for Carbonate Stones: From Neat TEOS to Multipurpose Hybrid Nanomaterials 191
9.1 Stone Consolidation in Built Heritage 191
9.2 Alkoxysilanes in Stone Conservation 193
9.3 Understanding Consolidants to Overcome Challenges 198
9.3.1 Influence of Carbonate Media on Sol-Gel Processes 198
9.3.2 Organo-Functional Alkoxysilanes as Adhesion Promoters 199
9.3.3 Delayed Hydrolysis Reactions 202
9.3.4 Tendency to Crack 203
9.4 Conclusion 209
References 210
Chapter 10: Analytical Investigations and Advanced Materials for Damage Diagnosis and Conservation of Monument’s Stucco 214
10.1 Introduction 214
10.2 Forms of Stucco Degradation 215
10.3 Diagnosing Stucco Damage 217
10.4 Salts Effects 218
10.5 Frost Action 221
10.6 Stucco Models Treated with Nanoparticles 222
10.7 Conclusion 224
References 224
Chapter 11: Nanotechnology for the Treatment of Stony Materials’ Surface Against Biocoatings 227
11.1 Introduction 227
11.2 Problem Statement 228
11.3 Treatment Methodologies and Tests 230
11.4 Parameters for Assessing Treatments 232
11.5 Hydrophobicity 234
11.6 Toxic Substances 235
11.7 Photochemical Effects 237
11.8 Combined Effects 241
11.9 Impacts on Materials 242
11.10 Impacts on the Environment 243
11.10.1 TiO2 NPs 244
11.10.2 Ag NPs 245
11.10.3 ZnO NPs 246
11.10.4 Cu NPs 247
11.10.5 SiO2 NPs 248
11.10.6 Carbon Nanotubes (CNTs) 249
11.10.7 Other NPs 250
11.11 Discussion 250
11.12 Conclusion 252
References 252
Chapter 12: Preserving Cultural Heritage Stone: Innovative Consolidant, Superhydrophobic, Self-Cleaning, and Biocidal Products 262
12.1 Introduction 262
12.2 Inverse Micelle Mechanism Producing Crack-Free Xerogels 264
12.2.1 Formation of a Microemulsion Containing n-Octylamine Inverse Micelles 265
12.2.2 Formation of SiO2 Seeds Within the Inverse Micelles 266
12.2.3 Growth of SiO2 Seeds in the SiO2 Oligomer Media 266
12.2.4 Packing of the SiO2 Nanoparticles and Formation of the Mesoporous Xerogel 266
12.3 Consolidant Products 266
12.4 Consolidant/Hydrophobic and Superhydrophobic Products 268
12.5 Photocatalytic Consolidants with Self-Cleaning Properties 270
12.6 Consolidant/Biocide Products 273
12.7 Conclusion 274
References 275
Chapter 13: Antimicrobial Properties of Nanomaterials Used to Control Microbial Colonization of Stone Substrata 279
13.1 Introduction 279
13.2 Control of Microbial Biodeterioration and Nanoscience Applied to Built Cultural Heritage 280
13.3 Antimicrobial Properties of NPs Used on Stone Substrate 281
13.3.1 Fundamentals of Antimicrobial Activity of NPs 281
13.3.2 Antimicrobial Activity of TiO2 NPs 283
13.3.3 Antimicrobial Activity of Ag NPs and Mixed Formulations 287
13.3.4 Antimicrobial Activity of ZnO NPs, CuO NPs, and Mixed Formulations 291
13.4 Discussion 293
13.5 Conclusion 296
References 297
Chapter 14: Advanced and Novel Methodology for Scientific Support on Decision-Making for Stone Cleaning 301
14.1 Introduction 301
14.2 Analytical Techniques, Materials, and Methods 302
14.3 Results and Discussion 304
14.3.1 Cleaning Assessment Criteria and Critical Parameters 304
14.3.2 Fuzzy Logic Modeling 310
14.3.3 Architecture of the Decision-Making System 311
14.3.4 Demonstration in Practice: The Case Study of the NAM Historic Building 314
14.4 Conclusion 321
References 323
Index 327

Erscheint lt. Verlag 22.1.2018
Zusatzinfo XII, 332 p. 124 illus., 89 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Geisteswissenschaften
Technik Maschinenbau
Schlagworte biomimetic • Coatings • conservation • limestone • Marble • Monument • nanotechnology • sandstone • Stone • Superhydrophobic
ISBN-10 3-319-72260-3 / 3319722603
ISBN-13 978-3-319-72260-3 / 9783319722603
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Technologie - Berechnung - Klimaschutz

von Volker Quaschning

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
39,99
Funktion, Gestaltung und Berechnung

von Karl-Heinz Decker; Karlheinz Kabus

eBook Download (2023)
Carl Hanser Fachbuchverlag
39,99