Hamilton-Jacobi-Bellman Equations

Numerical Methods and Applications in Optimal Control
Buch | Hardcover
XII, 197 Seiten
2018
De Gruyter (Verlag)
978-3-11-054263-9 (ISBN)
154,95 inkl. MwSt
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton–Jacobi–Bellman equations Improving policies for Hamilton–Jacobi–Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton–Jacobi–Bellman equations based on diagonally implicit symplectic Runge–Kutta methods Numerical solution of the simple Monge–Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton–Jacobi–Bellman equation within the European Union Emission Trading Scheme

Dante Kalise and Zhiping Rao, Radon Institute, Austria; Karl Kunisch, University of Graz and Radon Institute, Austria.

Erscheinungsdatum
Reihe/Serie Radon Series on Computational and Applied Mathematics ; 21
Co-Autor Marianne Akian, Jan Blechschmidt, Nikolai D. Botkin, Max Jensen, Axel Kröner, Athena Picarelli, Iain Smears, Karsten Urban, Mickaël D. Chekroun, Roland Herzog, Ilja Kalmykov, Johannes Diepolder, Eric Fodjo, Honghu Liu, Christoph Reisinger, Julen Rotaetxe Arto, Sebastian Steck, Varvara L. Turova
Zusatzinfo 54 b/w ill., 20 b/w tbl.
Verlagsort Berlin/Boston
Sprache englisch
Maße 170 x 240 mm
Gewicht 490 g
Themenwelt Religion / Theologie Christentum Kirchengeschichte
Mathematik / Informatik Mathematik
Schlagworte Dynamische Optimierung • Finite-Elemente-Methode • Hamilton-Jacobi-Differentialgleichung • Numerische Mathematik • Optimale Kontrolle
ISBN-10 3-11-054263-3 / 3110542633
ISBN-13 978-3-11-054263-9 / 9783110542639
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Geschichte der christlichen Kunst

von Johann Hinrich Claussen

Buch | Hardcover (2024)
C.H.Beck (Verlag)
32,00