History of Functional Analysis -  J. Dieudonne

History of Functional Analysis (eBook)

(Autor)

eBook Download: PDF
1983 | 1. Auflage
320 Seiten
Elsevier Science (Verlag)
978-0-08-087160-8 (ISBN)
Systemvoraussetzungen
56,47 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
History of Functional Analysis
History of Functional Analysis presents functional analysis as a rather complex blend of algebra and topology, with its evolution influenced by the development of these two branches of mathematics. The book adopts a narrower definition-one that is assumed to satisfy various algebraic and topological conditions. A moment of reflections shows that this already covers a large part of modern analysis, in particular, the theory of partial differential equations. This volume comprises nine chapters, the first of which focuses on linear differential equations and the Sturm-Liouville problem. The succeeding chapters go on to discuss the "e;"e;crypto-integral"e;"e; equations, including the Dirichlet principle and the Beer-Neumann method; the equation of vibrating membranes, including the contributions of Poincare and H.A. Schwarz's 1885 paper; and the idea of infinite dimension. Other chapters cover the crucial years and the definition of Hilbert space, including Fredholm's discovery and the contributions of Hilbert; duality and the definition of normed spaces, including the Hahn-Banach theorem and the method of the gliding hump and Baire category; spectral theory after 1900, including the theories and works of F. Riesz, Hilbert, von Neumann, Weyl, and Carleman; locally convex spaces and the theory of distributions; and applications of functional analysis to differential and partial differential equations. This book will be of interest to practitioners in the fields of mathematics and statistics.

Front Cover 1
History of Functional Analysis 4
Copyright Page 5
TABLE OF CONTENTS 6
INTRODUCTION 8
CHAPTER I: LINEAR DIFFERENTIAL EQUATIONS AND THE STURM-LIOUVILLE PROBLEM 16
§1. Differential equations and partial differential equations in the XVIII th century 16
§2. Fourier expansions 18
§3. The Sturm - Liouville theory 23
CHAPTER II: THE "CRYPTO-INTEGRAL" EQUATIONS 29
§1. The method of successive approximations 29
§2. Partial differential equations in the XIX th century 33
§3. The beginnings of potential theory 37
§4. The Dirichlet Principle 42
§5. The Beer - Neumann method 46
CHAPTER III: THE EQUATION OF VIBRATING MEMBRANES 54
§1. H.A. Schwarz's 1885 paper 54
§2. The contributions of Poincaré 63
CHAPTER IV: THE IDEA OF INFINITE DIMENSION 78
§1. Linear algebra in the XIX th century 78
§2. Infinite determinants 82
§3. Groping towards function spaces 86
§4 . The passage " from finiteness to infinity" 94
CHAPTER V: THE CRUCIAL YEARS AND THE DEFINITION OF HILBERT SPACE 104
§1. Fredholm's discovery 104
§2. The contributions of Hilbert 112
§3. The confluence of Geometry, Topology and Analysis 122
CHAPTER VI: DUALITY AND THE DEFINITION OF NORMED SPACES 128
§1. The search for continuous linear functionals 128
§2. The Lp and lp, spaces 131
§3. The birth of normed spaces and the Hahn - Banach theorem 135
§4. The method of the gliding hump and Baire category 145
CHAPTER VII: SPECTRAL THEORY AFTER 1900 151
§1. F. Riesz's theory of compact operators 151
§2. The spectral theory of Hilbert 155
§3. The work of Weyl and Carleman 167
§4. The spectral theory of von Neumann 178
§5. Bsnach slgebras 189
§6. Later developments 197
CHAPTER VIII: LOCALLY CONVEX SPACES AND THE THEORY OF DISTRIBUTIONS 217
§1. Weak convergence and weak topology 217
§2. Locally convex spaces . 222
§3 . The theory of distributions 228
CHAPTER IX: APPLICATIONS OF FUNCTIONAL ANALYSIS TO DIFFERENTIAL AND PARTIAL DIFFERENTIAL EQUATIONS 240
§1. Fixed point theorems 240
§2. Carleman operators and generalized eigenvectors 245
§3. Boundary problems for ordinary diffenential equations 250
§4. Sobolev spaces and a priori inequalities 255
§5. Elementary soultions, paramentrices and pseudo-differential operators 259
REFERENCES 287
AUTHOR INDEX 306
SUBJECT INDEX 313

Erscheint lt. Verlag 1.1.1983
Sprache englisch
Themenwelt Geisteswissenschaften Geschichte
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geschichte der Mathematik
Technik
ISBN-10 0-08-087160-7 / 0080871607
ISBN-13 978-0-08-087160-8 / 9780080871608
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich