Solutions Manual for Perspectives on Structure and Mechanism in Organic Chemistry (eBook)

eBook Download: EPUB
2023 | 3. Auflage
160 Seiten
Wiley (Verlag)
978-1-119-80868-8 (ISBN)

Lese- und Medienproben

Solutions Manual for Perspectives on Structure and Mechanism in Organic Chemistry -  Felix A. Carroll
Systemvoraussetzungen
39,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
SOLUTIONS MANUAL FOR PERSPECTIVES ON STRUCTURE AND MECHANISM IN ORGANIC CHEMISTRY

Based on the author's first-hand classroom experience, this solutions manual complements the 3rd edition of Perspectives on Structure and Mechanism in Organic Chemistry. The solutions to the 438 textbook problems help students increase their understanding of physical organic chemistry, and more than 550 references stimulate their engagement with the chemical literature.

Felix A. Carroll, PhD is the Joseph R. Morton Professor of Chemistry Emeritus at Davidson College. His research focuses on organic photochemistry and photophysics, kinetics, the synthesis and characterization of insect pheromone analogues, the correlation of molecular structure with physical properties, the combustion characteristics of organic compounds, and chemical education. Dr. Carroll has published extensively in the peer-reviewed literature and was awarded a patent in the field of insect pheromones.

Felix A. Carroll, PhD is the Joseph R. Morton Professor of Chemistry Emeritus at Davidson College. His research focuses on organic photochemistry and photophysics, kinetics, the synthesis and characterization of insect pheromone analogues, the correlation of molecular structure with physical properties, the combustion characteristics of organic compounds, and chemical education. Dr. Carroll has published extensively in the peer-reviewed literature and was awarded a patent in the field of insect pheromones.

Chapter 1 Fundamental Models of Organic Chemistry 1

Chapter 2 Introduction to Computational Chemistry 11

Chapter 3 Stereochemistry 31

Chapter 4 Molecular Geometry and Steric Energy 49

Chapter 5 Reactive Intermediates 57

Chapter 6 Determining Reaction Mechanisms 65

Chapter 7 Acid and Base Catalysis of Organic Reactions 73

Chapter 8 Substitution Reactions 81

Chapter 9 Elimination Reactions 93

Chapter 10 Addition Reactions 105

Chapter 11 Pericyclic Reactions 117

Chapter 12 Organic Photochemistry 133

CHAPTER 1
Fundamental Models of Organic Chemistry


  1. 1.1. An answer to this question should be stated in terms of macroscopic phenomena. A historical exposition provides a rationale for the basis of contemporary chemistry, and several monographs on the history of chemistry can be used to summarize the ideas and observations that led to contemporary chemistry theory.1,2,3
  2. 1.2. See, for example, figure 2D in Tieu, P.; Yan, X.; Xu, M.; et al. Small 2021, 17, 2006482.
    1. Transmission electron microscopy was used in this study.
    2. The eye sees a macroscopic image on a computer screen or on a printed page.

      For another example, see the image of kekulene reported by Pozo, I.; Majzik, Z.; Pavliček, N.; et al. J. Am. Chem. Soc. 2019, 141, 15488.

  3. 1.3.
    1. Two alternative geometries and their elimination on the basis of number of isomers are:
      1. Square planar. There would be two isomers of CH2Cl2, one “cis,” in which the Cl−C–Cl bond angle is 90°, and one “trans,” in which the Cl−C−Cl bond angle is 180°.
      2. Square pyramid. Similarly, there would be two isomers of CH2Cl2 with the chlorines in the square base plus another isomer with one chlorine at the apex of the pyramid.
    2. In all answers, a substituent is presumed to occupy a position previously occupied by a hydrogen atom in the parent structure.4
      1. If benzene had the structure we now call fulvene, there should be three different derivatives with the formula C6H5Cl.
      2. If benzene had the structure we now call Dewar benzene, there would be two and only two isomers with the formula C6H5Cl.
      3. If benzene had the structure we now call benzvalene, there would be three possible isomers with the formula C6H5Cl.
      4. If benzene had the structure we now call prismane, there would be only one isomer with the formula C6H5Cl, but there would be four isomers (including a pair of enantiomers) with the formula C6H4Cl2.
      5. If benzene had the structure we now call [3]radialene, there would be one and only one isomer with the formula C6H5Cl, but there would be four possible isomers (shown below) with the formula C6H4Cl2.
      6. There are also acyclic structures with the formula C6H6, such as 2,4‐hexadiyne, and they may be analyzed similarly. For example, if benzene were 2,4‐hexadiyne, then there would be one and only one C6H5Cl, but there could be only two structures with the formula C6H4Cl2.
    3. One can never know that something that has not been tested is like something else to which it seems similar. However, it seems unproductive to dwell on this possibility until there is an experimental result that could be rationalized with a structure for chloromethane that is different from the tetrahedral structure of methane. The spectroscopic results for chloromethane are consistent with a tetrahedral geometry.
  4. 1.4. The data and equations are given in Bondi, J. J. Phys. Chem. 1964, 68, 441.

    For n‐pentane,

    These results agree with those given by the general formulas for n‐alkanes:

    For isopentane,

    For neopentane,

  5. 1.5. Kiyobayashi, T.; Nagano, Y.; Sakiyama, M.; et al. J. Am. Chem. Soc. 1995, 117, 3270.
  6. 1.6. Turner, R. B.; Goebel, P.; Mallon, B. J.; et al. J. Am. Chem. Soc. 1968, 90, 4315. Also see Hautala, R. R.; King, R. B.; Kutal, C. in Hautala, R. R.; King, R. B.; Kutal, C., Eds. Solar Energy: Chemical Conversion and Storage; Humana Press: Clifton, NJ, 1979; p. 333. The difference in heats of hydrogenation indicates that quadricyclane is less stable than norbornadiene by 24 kcal/mol, so this is the potential energy storage density for the photochemical reaction.
  7. 1.7. Pilcher, G.; Parchment, O. G.; Hillier, I. H.; et al. J. Phys. Chem. 1993, 97, 243.
  8. 1.8. See Davis, H. E.; Allinger, N. L.; Rogers, D. W. J. Org. Chem. 1985, 50, 3601.
  9. 1.9.
    1. −632.6 ± 2.2 kJ/mol. Roux, M. V.; Temprado, M.; Jiménez, P.; et al. J. Phys. Chem. A 2006, 110, 12477.
    2. 2‐acetylthiophene is 4.7 kJ/mol more stable than 3‐acetylthiophene in the gas phase. Roux, M. V.; Temprado, M.; Jiménez, P.; et al. J. Phys. Chem. A 2007, 111, 11084.
  10. 1.10. Wiberg, K. B.; Hao, S. J. Org. Chem. 1991, 56, 5108.
  11. 1.11. Fang, W.; Rogers, D. W. J. Org. Chem. 1992, 57, 2294.
  12. 1.12.
    1. Using equation 1.9:
    2. Using equation 1.12:
  13. 1.13. See Smyth, C. P. in Weissberger, A.; Rossiter, B. W., Eds. Physical Methods of Chemistry, Vol. 1, Part 4; Wiley‐Interscience: New York, 1972; pp. 397–429.
    1. The gas phase dipole moments for CH3–F, CH3–Cl, CH3–Br, and CH3–I are 1.81, 1.87, 1.80 and 1.64 D, respectively. Using the bond length data in Table 1.1 and rewriting equation 1.23 lead to the following partial charges on F, Cl, Br, and I, respectively: −0.27, −0.22, −0.19, −0.16.
    2. The dipole moments do not show a monotonic trend along the series because a dipole moment is a product of two terms. In the series of methyl halides, one term (the partial charge) goes down and the other term (bond length) goes up. The product of these two terms is a maximum at the second member of the series (X = Cl). Note that the assumption that only the carbon and halogen atoms are charged is an over‐simplification. An Extended Hückel calculation indicates that the three methyl hydrogen atoms also bear some charge.
  14. 1.14. Because Pauling electronegativities are computed from the properties of atoms in molecules, they generally cannot be computed for the inert gases. However, krypton and xenon fluorides are known, and electronegativities of krypton and xenon were reported by Meek, T. L. J. Chem. Educ. 1995, 72, 17.
  15. 1.15. Using equation 1.47 leads to a value of 2.62 for . Therefore, the hybridization of carbon orbitals used for carbon–carbon bonds is sp2.62. The relationship

    then gives a value of 3.47 for the carbon orbitals used for the carbon–hydrogen bonds.

  16. 1.16. Mastryukov, V. S.; Schaefer, H. F., III.; Boggs, J. E. Acc. Chem. Res. 1994, 27, 242. Also see the discussion in Gilardi, R.; Maggini, M.; Eaton, P. E. J. Am. Chem. Soc. 1988, 110, 7232.
    1. As the bond angle increases, the C–C bond length decreases. Conversely, as the bond angle decreases, the C–C bond length increases.
    2. The larger the α, the greater the contribution of p character to the orbital of C2 used for the C2–C3 bond. This means greater s character in the orbital of C2 used for the C1–C2 bond, which results in a shorter C1–C2 bond. The same result can be rationalized using the VSEPR approach. As the angle α increases, there is less repulsion of the electrons comprising the C1–C2 bond with the electrons in the C2−C3 bond. This allows the electrons in the C1–C2 bond to move closer to C2, thus decreasing the bond length.
  17. 1.17. Maksić, Z. B.; Randić, M. J. Am. Chem. Soc. 1970, 92, 424. The bond lengths are a function of the hybridization of the carbon atoms.
    1. ethyne, ethene, cyclopropane, cyclobutane, ethane.
    2. 1,3‐butadiyne, 1‐butene‐3‐yne, 1,3‐butadiene, propene, 2‐methylpropene, 2‐methylpropane, ethane.
  18. 1.18.
    1. According to the bent bond formulation, the electrons in the bent C–C bonds are pulled in toward the other olefinic carbon atom, so the electrons in these bonds repel the electrons in the carbon–hydrogen bonds less than they would in propane. Therefore, the H–C–H bond angle opens to a larger value.
    2. The electrons in formaldehyde should be pulled even more strongly away from the carbon atom than is the case in ethene. Therefore, the repulsion of electrons in either C–O bond with electrons in a C–H bond is even less than the repulsion of electrons in the C–C bonds with electrons in a C–H bond in ethene. Therefore, the H–C–H bond angle in formaldehyde should be greater than that in ethene.
  19. 1.19. Based on an H–C–H angle of 116.2° for ethene, Robinson, E. A.; Gillespie, R. J. J. Chem. Educ. 1980, 57, 329 (appendix, p. 333) reported sp2.26 or 30.6% s character for the C–H bond. Using 117° for the H–C–H angle5 leads to sp2.20, or 31.2% s character. For formaldehyde, using an H–C–H angle of 125.8° similarly leads to 36.9% s character for the carbon orbital used for carbon–hydrogen bonding.6
  20. 1.20.
    1. The formula is given by Newton, M. D.; Schulman, J. M.; Manus, M. M. J. Am. Chem. Soc. 1974, 96, 17. Rewrite equation 1.52 as J = 5.7 × (% s) − 18.4 Hz. Then 500/(1 + λ2) =...

Erscheint lt. Verlag 11.4.2023
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Schlagworte Chemie • Chemistry • Drug Discovery & Development • Organic Chemistry • Organische Chemie • Physical Chemistry • Physikalische Chemie • Physikalische Organische Chemie • Wirkstoffforschung • Wirkstoffforschung u. -entwicklung
ISBN-10 1-119-80868-5 / 1119808685
ISBN-13 978-1-119-80868-8 / 9781119808688
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
EPUBEPUB (Adobe DRM)
Größe: 10,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
79,99