Isotope Geochemistry (eBook)
723 Seiten
Wiley (Verlag)
978-1-119-72992-1 (ISBN)
Provides a thorough and up-to-date overview of radiogenic and stable isotope geochemistry
Now in its second edition, Isotope Geochemistry presents a comprehensive introduction to radiogenic and stable isotope geochemistry. The first five chapters cover fundamentals including the physics of nuclei, radioactive decay, nucleosynthesis, geochronology, and the theory of stable isotope fractionation. The next chapter focuses on the isotope geochemistry of meteorites and their constraints on the formation of the solar system and the Earth. The subsequent three chapters cover radiogenic and stable isotope geochemistry evolution of the Earth's mantle and crust. Three more chapters are devoted to the Earth's surface, the exogene, including the hydrologic system, the biosphere, and climate. A new chapter in this edition focuses on the use of isotopes in paleontology and archeology. The final chapter is devoted to the isotope geochemistry of the noble gases.
Illustrated in full color throughout, Isotope Geochemistry is intended primarily as a textbook for advanced undergraduate and graduate students. It is also intended as a reference for earth science professionals, reflecting the impact that isotope geochemistry has on virtually every aspect of the earth sciences, from climate change and geomorphology to geodynamics.
William M. White is Professor Emeritus of Earth and Atmospheric Sciences at Cornell University. He received his B.Sc. in geology at the University of California at Berkeley and a Ph.D. in oceanography at the University of Rhode Island. His is the author of Geochemistry, also published by Wiley, the editor of the Encyclopedia of Geochemistry, and the founding editor of the journal Geochemistry, Geophysics, Geosystems. He is a Geochemistry Fellow of the Geochemical Society and European Association of Geochemistry, a fellow of the AGU and an ISI highly cited researcher. He was awarded the 2022 Urey Medal of the European Association of Geochemistry.
William M. White is Professor Emeritus of Earth and Atmospheric Sciences at Cornell University. He received his B.Sc. in geology at the University of California at Berkeley and a Ph.D. in oceanography at the University of Rhode Island. His is the author of Geochemistry, also published by Wiley, the editor of the Encyclopedia of Geochemistry, and the founding editor of the journal Geochemistry, Geophysics, Geosystems. He is a Geochemistry Fellow of the Geochemical Society and European Association of Geochemistry, a fellow of the AGU and an ISI highly cited researcher. He was awarded the 2022 Urey Medal of the European Association of Geochemistry.
Cover 1
Title Page 5
Copyright Page 6
Contents 7
Chapter 1 Atoms and Nuclei: Their Physics and Origins 15
1.1 Introduction 15
1.2 Physics of the nucleus 16
1.2.1 Early development of atomic and nuclear theory 16
1.2.2 Some definitions and units 17
1.2.3 Nucleons, nuclei, and nuclear forces 17
1.2.4 Atomic masses and binding energies 18
1.2.5 The Liquid-drop model 21
1.2.6 The Shell Model of the nucleus 21
1.2.6.1 Odd–even effects, magic numbers, and shells 21
1.2.6.2 Magnetic moment 24
1.2.6.3 Pairing effects 25
1.2.6.4 Capture cross-sections 25
1.2.7 Collective model 26
1.3 Radioactive Decay 26
1.3.1 Gamma decay 26
1.3.2 Alpha decay 27
1.3.3 Beta-decay 28
1.3.4 Electron capture 29
1.3.5 Spontaneous fission 29
1.4 Nucleosynthesis 30
1.4.1 Cosmological nucleosynthesis 32
1.4.2 Stellar nucleosynthesis 33
1.4.2.1 Astronomical background 33
1.4.2.2 Hydrogen, helium, and carbon burning in main sequence and giant stars 37
1.4.2.3 The e-process 40
1.4.2.4 The s-process 40
1.4.3 Explosive nucleosynthesis 42
1.4.3.1 Supernovae and the r-process 42
1.4.3.2 Neutron star mergers: kilonovae 44
1.4.3.3 The p-process 46
1.4.4 Nucleosynthesis in interstellar space 47
1.5 SUMMARY 48
References 49
Problems 49
Chapter 2 Decay Systems and Geochronology I 51
2.1 Basics of Radiogenic Isotope Geochemistry 51
2.1.1 Historical background 51
2.1.2 The basic equations 52
2.1.3 A special case: The U–Th–Pb system 54
2.1.4 Caveat: isotope fractionation 55
2.2 Fundamentals of Geochronology 55
2.2.1 Isochron dating 55
2.2.2 Calculating isochrons 57
2.2.3 Correcting mass fractionation 59
2.3 The K–Ar–Ca system 61
2.3.1 Diffusion, cooling rates, and closure temperatures 62
2.3.2 40Ar–39Ar Dating 65
2.3.2.1 Standards, calibration, and astronomical tuning 66
2.3.2.2 Release spectra and their interpretation 67
2.3.2.3 40Ar/39Ar isochrons 68
2.4 The Rb–Sr System 70
2.4.1 Rb–Sr chemistry and geochronology 71
2.4.2 Sr Isotope chronostratigraphy 73
2.5 Rare-Earth Decay Systems 74
2.5.1 Epsilon and mu notations 76
2.5.2 The Sm–Nd decay system 77
2.5.2.1 Sm–Nd model ages and crustal residence times 79
2.5.3 The La–Ce system 80
2.5.4 The Lu–Hf system 82
2.6 The Re–Os–Pt System 86
2.6.1 Re depletion ages and Re–Os model ages 88
2.6.2 Re–Os. geochronology 89
2.6.2.1 Re-Os dating of diamonds 90
2.6.2.2 Re–Os dating of ore deposits 90
2.6.2.3 Re–Os dating of hydrocarbons 92
2.6.3 The 190Pt–186Os decay system 93
References 95
Problems 99
Chapter 3 Decay systems and geochronology II: U and Th 102
3.1 Introduction 102
3.1.1 Chemistry of U, Th, and Pb 102
3.1.2 The 238U/235U ratio and uranium decay constants 103
3.2 Pb–Pb Ages and Isochrons 104
3.2.1 Total U–Pb isochrons 106
3.2.2 Th/„U ratios 107
3.3 Zircon Dating 107
3.4 U-Decay Series Dating 113
3.4.1 Basic principles 113
3.4.2 234U–238U dating 116
3.4.3 230Th–238U dating 117
3.4.3.1 Low-temperature applications 117
3.4.3.2 High-temperature applications 121
3.4.4 226Ra dating 123
3.4.5 231Pa–235U dating 123
3.4.6 210Pb dating 125
3.4.7 210Po–210Pb dating 128
References 129
Problems 131
Chapter 4 Geochronology III: Other Dating Methods 134
4.1 Introduction 134
4.2 Cosmogenic Nuclides 134
4.2.1 Cosmic rays in the atmosphere 134
4.2.2 14C dating 135
4.2.3 Applications of meteoric 10Be 140
4.2.3.1 Sediment geochronology 140
4.2.3.2 Erosion and denudation rates 142
4.2.4 Cosmogenic radionuclides in hydrology 145
4.2.5 In situ produced cosmogenic nuclides 148
4.2.5.1 Exposure ages 148
4.2.5.2 Erosion rates 152
4.3 Thermochronology 154
4.3.1 Fission tracks 155
4.3.1.1 Analytical procedures 156
4.3.1.2 Fission track lengths 158
4.3.2 .(U–Th)/He 160
4.3.3 Uplift and erosion rates 163
References 166
Problems 168
Chapter 5 Fractionation of Isotopes 171
5.1 Introduction 171
5.2 Notation, definitions, and standards 172
5.2.1 The ? notation 172
5.2.2 The fractionation factor 174
5.3 Theory of Equilibrium isotopic fractionations 175
5.3.1 Partition functions and thermodynamics 176
5.3.1.1 Translational partition function 177
5.3.1.2 Rotational partition function 178
5.3.1.3 Vibrational partition function 179
5.3.2 Reduced partition functions and ? factors 179
5.3.3 Example of fractionation factor calculated from partition functions 180
5.3.4 Isotopologues and isotopic "Clumping" 184
5.4 Kinetic fractionation 187
5.4.1 Diffusion effects 187
5.4.2 Reaction kinetics 189
5.4.3 Kinetic fractionation during evaporation and condensation 192
5.4.4 Rayleigh fractionation 194
5.4.4.1 Rayleigh fractionation and the meteoric water line 194
5.4.4.2 Rayleigh fractionation in magmatic processes 194
5.5 Mass-independent. versus mass-dependent. fractionation 197
5.5.1 Mass dependence of equilibrium and kinetic fractionations 197
5.5.2 Mass-dependence of fractionations in biological processes 199
5.5.3 Mass-independent fractionations 200
5.5.3.1 Photochemical-produced fractionations 200
5.5.3.2 Nuclear magnetic and volume effects 202
References 206
Problems 207
Chapter 6 Isotope Cosmochemistry 209
6.1 Introduction 209
6.2 Star Birth 210
6.3 Meteorites 212
6.4 Cosmochronology 215
6.4.1 Conventional methods 215
6.4.2 Extinct radionuclides 220
6.4.2.1 53Mn–53Cr 220
6.4.2.2 129I–129Xe and 244Pu 221
6.4.2.3 107Pd–107Ag 223
6.4.2.4 26Al–26Mg 224
6.4.2.5 182Hf–182W 228
6.4.2.6 146Sm–142Nd 232
6.4.2.7 Other extinct radionuclides: 10Be, 36Cl, 41Ca, and 60Fe 236
6.4.2.8 Origin of short-lived. nuclides 238
6.5 Stardust 241
6.5.1 Neon alphabet soup and "presolar" noble gases in meteorites 242
6.5.2 Isotopic composition of other elements in presolar grains 244
6.6 Isotopic variations in bulk meteorites 250
6.6.1 Oxygen isotope variations and nebular processes 250
6.6.2 Isotopic variations in other elements 251
6.6.3 The Great Isotopic Solar System Divide 253
6.7 Cosmic-ray exposure ages of meteorites 256
References 257
Problems 262
Chapter 7 Isotope Geochemistry of the Mantle 265
7.1 Introduction 265
7.1.1 Definitions: time-integrated and time-averaged 266
7.2 Composition of the Earth's Mantle 267
7.3 Radiogenic isotopes in oceanic basalts 271
7.3.1 Sr, Nd, Ce, and Hf isotope geochemistry of the mantle 271
7.3.1.1 Sr and Nd isotope ratios 271
7.3.1.2 Ce isotope ratios 275
7.3.1.3 Hf isotope ratios 276
7.3.2 Pb isotope ratios 277
7.3.3 Os isotope ratios 282
7.4 Inferences on mantle structure and evolution 286
7.4.1 The depleted MORB mantle 286
7.4.1.1 Mass of depleted MORB mantle 286
7.4.1.2 Evolution of DMM 290
7.4.2 Mantle plumes and the lower mantle 292
7.4.2.1 Radiogenic isotopes and the recycling paradigm 293
7.4.2.2 Stable isotope evidence 296
7.4.2.3 Heterogeneity and zoning in mantle plumes 302
7.4.2.4 A common component and a primordial signal 303
7.5 The Subcontinental Lithosphere 310
7.6 U-Series. Isotopes and Melt Generation 314
7.6.1 Spiegelman and Elliot model of reactive melt transport 317
7.6.2 Variations on a theme: other models of U-series disequilibrium 320
References 322
Problems 327
Chapter 8 Isotope Geochemistry of the Continental Crust 329
8.1 Introduction 329
8.2 Mechanisms of Crustal Growth 329
8.3 The Earliest Continental Crust 331
8.3.1 The Hadean zircon record 331
8.3.1.1 The Zircon Hf Isotope Record 332
8.3.1.2 Stable isotopes in Hadean zircons 333
8.3.2 Echoes of early continental crust from extinct radionuclides 334
8.3.2.1 142Nd evidence of early crust formation 335
8.3.2.2 Tungsten isotope anomalies: evidence of a late accretionary veneer? 337
8.3.3 What happened to the Hadean crust? 339
8.4 The Continental Crust Through Time 340
8.4.1 The Zircon record 340
8.4.1.1 The early Archean 340
8.4.1.2 The zircon record through geologic time 341
8.4.2 The Debate over Continental Growth 345
8.4.2.1 Growth or preservation? 345
8.4.2.2 When did plate tectonics begin? 346
8.4.2.3 Titanium isotopes and plate tectonics 347
8.4.3 Case studies of crustal growth 348
8.4.4 Growth of the continental crust through time 351
8.5 Isotopic Composition of the Continental Crust 355
8.5.1 Sediments as samples of the upper crust 355
8.5.2 Isotopic Composition of the Lower Crust 357
8.6 Subduction Zones 362
8.6.1 Geochemistry of two-component mixtures 362
8.6.2 Radiogenic isotopic compositions of subduction-related magmas 365
8.6.3 Assessing crustal assimilation in island arc magmas 367
8.6.3.1 Combined fractional crystallization and assimilation 369
8.6.3.2 Combining radiogenic and oxygen isotopes 369
8.6.3.3 Sediment subduction versus assimilation 371
8.6.4 10Be in subduction-related magmas 372
8.6.5 U-Decay series geochemistry of arc magmas 373
References 376
Problems 381
Chapter 9 Stable Isotopes in the Solid Earth 382
9.1 Introduction 382
9.2 Equilibrium Fractionations Among Minerals 382
9.2.1 Compositional and structural dependence of equilibrium fractionations 382
9.2.2 Theoretical and experimental determination of equilibrium fractionations 384
9.2.2.1 Silicates and oxides 385
9.2.2.2 Sulfides 385
9.2.2.3 Carbonates 388
9.3 Geothermometry 388
9.4 Stable Isotope Composition of the Mantle 390
9.4.1 Oxygen 391
9.4.2 Carbon 393
9.4.3 Hydrogen 395
9.4.4 Nitrogen 396
9.4.5 Sulfur and selenium 397
9.4.6 Li, B, and Cl 399
9.4.6.1 Lithium isotopes 399
9.4.6.2 Boron isotopes 400
9.4.6.3 Chlorine isotopes 401
9.4.7 Mg, Ca, Si, and Ge Isotopes 403
9.4.7.1 Magnesium isotopes 403
9.4.7.2 Calcium isotopes 405
9.4.7.3 Silicon and germanium isotopes 408
9.4.8 Transition metal stable isotopes 411
9.4.8.1 Titanium isotopes 411
9.4.8.2 Vanadium isotopes 411
9.4.8.3 Chromium isotopes 412
9.4.8.4 Iron isotopes 413
9.4.8.5 Copper isotopes 416
9.4.8.6 Zinc isotopes 418
9.4.8.7 Molybdenum isotopes 419
9.4.8.8 Tin isotopes 422
9.4.8.9 Mercury isotopes 423
9.4.8.10 Thallium isotopes 425
9.4.8.11 Uranium isotopes 428
9.5 Oxygen Isotopes in Hydrothermal Systems 430
9.5.1 Ridge crest hydrothermal activity and metamorphism of the oceanic crust 430
9.5.2 Meteoric geothermal systems 433
9.5.3 Water–rock. reaction: theory 433
9.5.4 The Skaergaard intrusion 435
9.5.5 Oxygen isotopes and mineral exploration 436
9.6 Sulfur Isotopes in Magmatic and Hydrothermal Systems 438
9.6.1 Introduction 438
9.6.2 Sulfur isotope fractionations in magmatic and hydrothermal processes 438
9.6.2.1 Sulfur isotope fractionation in magmas 438
9.6.2.2 Sulfur isotope fractionation in hydrothermal systems 439
9.6.3 Isotopic composition of sulfide ores 442
9.6.3.1 Stratiform Cu deposits 443
9.6.3.2 Layered intrusions 443
9.6.3.3 Mississippi Valley and Irish-type deposits 445
9.6.3.4 Volcanogenic massive sulfide deposits 446
9.6.3.5 Porphyry copper deposits 447
9.7 Copper Isotopes in Ore Deposits 448
References 451
Problems 460
Chapter 10 Light Stable Isotopes in the Exogene 462
10.1 Introduction 462
10.2 The Hydrologic System 462
10.2.1 Ocean chemistry, structure, and circulation: a brief overview 462
10.2.2 Hydrogen and oxygen isotope fractionation in the hydrologic system 464
10.2.3 The ?18O–?D meteoric water line 465
10.2.4 Triple oxygen isotopes in the hydrologic system 467
10.3 Isotope Ratios in the Biosphere 468
10.3.1 Carbon isotope fractionation during photosynthesis 468
10.3.2 Nitrogen isotope fractionation in biological processes 472
10.3.3 Biological fractionation of oxygen and hydrogen isotopes 475
10.3.4 Biological fractionation of sulfur isotopes 478
10.4 Isotope Ratios in the Atmosphere 479
10.4.1 The stratosphere 479
10.4.1.1 Oxygen 479
10.4.1.2 Sulfur 481
10.4.2 The troposphere 481
10.4.2.1 Oxygen Isotopes in O2 482
10.4.2.2 Oxygen isotopes in CO2 482
10.4.2.3 Nitrogen compounds 483
10.4.2.4 C isotopes in CO2 488
10.4.2.5 Methane 493
10.4.2.6 Methane clumped isotope analysis 495
10.4.2.7 Sulfur isotopes 500
References 503
Problems 507
Chapter 11 Non-Traditional Stable and Radiogenic Isotopes in the Exogene 509
11.1 Introduction 509
11.2 Radiogenic isotopes in the modern ocean 509
11.2.1 Nd, Hf, Pb, and Os 509
11.2.2 U and Th decay series isotopes in oceanography 513
11.3 Stable isotope ratios of conservative elements 516
11.3.1 Lithium isotopes 516
11.3.2 Boron isotopes 517
11.3.3 Magnesium isotopes 519
11.3.4 Calcium isotopes 521
11.4 Stable isotope ratios of nutrient elements 523
11.4.1 Nitrogen isotopes 523
11.4.2 Silicon and germanium isotopes 524
11.4.3 Selenium isotopes 528
11.5 Stable isotope ratios of transition metals 529
11.5.1 Chromium isotopes 529
11.5.2 Iron isotopes 531
11.5.3 Copper isotopes 536
11.5.4 Zinc isotopes 538
11.5.5 Molybdenum isotopes 541
11.5.6 Mercury isotopes 545
11.5.6.1 The mercury cycle 545
11.5.6.2 Mercury isotopic fractionations 546
11.5.6.3 Mercury isotopic variations in the exogene 547
11.5.7 Thallium isotopes 550
11.5.8 Uranium isotopes 553
References 555
Problems 561
Chapter 12 Paleoclimate, Paleoceanography, and Atmospheric History 563
12.1 Introduction 563
12.2 The Pleistocene Climate Record in Deep Sea Sediments 563
12.2.1 The Quaternary ?18O record in sediments 565
12.2.2 Milankovitch cycles 566
12.2.3 Quaternary continental isotopic records 569
12.2.3.1 Antarctic and Greenland ice cores 569
12.2.3.2 Speleothem records 572
12.3 Isotopes in paleoceanography 573
12.3.1 Carbon isotopes in paleoceanography 574
12.3.2 Radiogenic isotopes in paleoceanography 575
12.3.3 Calcium isotopes in paleoceanography 578
12.3.4 Silicon isotopes in paleoceanography 579
12.4 Climate in the Cenozoic 580
12.4.1 The Cenozoic marine ?18O record 580
12.4.2 Soils and paleosols 583
12.5 Carbon isotopes, atmospheric carbon dioxide, and climate 587
12.5.1 CO2 and carbon isotopes in ice cores 587
12.5.2 Isotopic proxies for atmospheric CO2 591
12.5.2.1 Boron isotopes as a CO2 proxy 591
12.5.2.2 ?13C in C37 alkadienones 591
12.5.3 The PETM and K-Pg crises 592
12.6 Tracing the evolution of atmospheric oxygen 595
12.6.1 Wiffs of oxygen in the Archean 596
12.6.1.1 Fe isotopes 596
12.6.1.2 U isotopes 598
12.6.1.3 Mo, Tl, and Se isotopes 598
12.6.2 MIF sulfur and the GOE 601
12.6.3 The Ups and downs of atmospheric oxygen in the Proterozoic 602
12.6.3.1 Siderean glaciations 602
12.6.3.2 High O2 levels in the Lomagundi–Jatuli event 602
12.6.3.3 The boring billion 606
12.6.3.4 The Neoproterozoic revolution 606
12.6.3.5 Darwiin's dilemma 608
12.6.4 The Phanerozoic 608
12.6.4.1 Variations in ?13C and ?34S in a still evolving exogene 608
12.6.4.2 Modeling the Phanerozoic evolution of’CO2 and O2 610
References 615
Chapter 13 Life, Paleoecology, and Human History 621
13.1 Introduction 621
13.2 Isotopes in evolution 621
13.2.1 Isotopic fossils of the earliest life 621
13.2.2 Using clumped isotopes to determine dinosaur body temperatures 623
13.3 Isotopes and diet: you are what you eat 624
13.4 Paleoecology of grasslands 625
13.4.1 Evolution of C4 plants and the grassland biome 625
13.4.2 Evolution of horses 628
13.4.3 Human evolution 629
13.4.3.1 The climate of hominin evolution 629
13.4.3.2 Walking out of the forests and into the grasslands 631
13.5 Paleoecology of the Pleistocene Tundra Steppe 633
13.5.1 A wide-ranging mammoth 633
13.5.2 Neanderthal diets 634
13.5.2.1 ?13C and ?15N 634
13.5.2.2 Ca isotopes 636
13.6 The agricultural revolution 637
13.6.1 Domestication of maize 638
13.6.2 Domestication of millet 639
13.6.3 Agriculture, diet, and culture in Europe 640
13.6.3.1 Tracing immigration and agriculture with Sr isotopes 640
13.6.3.2 Neolithic dairying in England 642
13.6.3.3 Finding Ötzi the ice man’s home 642
13.7 The metallurgical revolution 643
References 644
Chapter 14 Noble Gas Isotope Geochemistry 648
14.1 Introduction 648
14.1.1 Noble gas chemistry 648
14.2 Noble Gases in the Solar System 649
14.2.1 Noble gas abundance patterns 649
14.2.2 Noble gas isotope ratios 651
14.3 Helium 653
14.3.1 The R/RA notation 653
14.3.2 He in the atmosphere, crust, and• oceans 654
14.3.3 He in the mantle 655
14.4 Neon 658
14.4.1 Neon isotope systematics in the Earth 658
14.4.2 Neon in the solid earth 658
14.5 Argon 660
14.6 Krypton 662
14.7 Xenon 664
14.8 Implications of Noble Gas Isotope Ratios for the Origin and Evolution of the Earth 668
14.8.1 Reservoirs of noble gases in the solid Earth 668
14.8.1.1 The core as a reservoir of noble gases 668
14.8.1.2 Mantle reservoirs 669
14.8.2 Subducted atmospheric noble gases in the mantle 670
14.8.3 Mantle noble gas budgets 671
14.8.4 Preserved noble gas heterogeneity in the Earth 676
14.9 Noble gas constraints on formation and evolution of the Earth 678
14.9.1 Sources of terrestrial volatiles 679
14.9.2 The Xenon Paradoxes 681
14.9.3 Degassing of the Earth's interior 683
References 685
Problems 689
Index 691
EULA 723
Erscheint lt. Verlag | 13.2.2023 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Geowissenschaften ► Geologie |
Schlagworte | Boden- u. Geochemie • Chemie • Chemistry • earth sciences • Geochemie • Geochemie, Mineralogie • Geochemistry & Minerology • Geowissenschaften • Isotopenanalyse • Isotopenchemie • Soil & Geochemistry |
ISBN-10 | 1-119-72992-0 / 1119729920 |
ISBN-13 | 978-1-119-72992-1 / 9781119729921 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Größe: 44,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich