Mission-Oriented Sensor Networks and Systems: Art and Science (eBook)

Volume 2: Advances

Habib M. Ammari (Herausgeber)

eBook Download: PDF
2019 | 1st ed. 2019
XVIII, 794 Seiten
Springer International Publishing (Verlag)
978-3-319-92384-0 (ISBN)

Lese- und Medienproben

Mission-Oriented Sensor Networks and Systems: Art and Science -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain-computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.

Foreword 10
Contents 12
About the Editor 15
Introduction 19
1 Mission-Oriented Sensor Networks and Systems: Art and Science 19
2 Book Organization 21
3 Acknowledgements 23
Mission-Critical Applications and Cyber-Physical Systems 27
Autonomous Cooperative Routing for Mission-Critical Applications 28
1 Introduction 29
1.1 Team-Based Mission-Critical Applications 29
2 Mobile Ad Hoc Routing Revisited 32
3 Autonomous Cooperative Networking Solutions 34
3.1 Autonomous Cooperative Routing Background 34
3.2 Why Autonomous Cooperative Routing? 36
4 A Higher Degree of Autonomy 44
4.1 Motivation 45
4.2 Full Autonomy Enabled by Geo-routing 47
4.3 Random Access 49
4.4 Self-localization Scheme 50
5 Practical Implementation Challenges 53
5.1 Wireless Channel Model 53
5.2 Cooperative Carrier Frequency Offset 54
5.3 Cooperative Power Delay Profile 59
5.4 Self-localization Random Access Blocks 62
6 Experimental Performance Evaluation Results 63
6.1 Development Platform 63
6.2 Equalizer Performance 65
6.3 Array Gain 67
7 Conclusions 68
References 68
Using Models for Communication in Cyber-Physical Systems 72
1 Introduction 72
2 Using Communication for Tracking a Vehicle (or a System) 74
3 Example of Models for Vehicle Movement 78
4 Using Models in MBC 80
5 Using a Hybrid Automaton Model in MBC 82
6 Evaluating MBC with Collision Warning Application 83
6.1 A Sample FCW Algorithm 84
6.2 Performance Metrics 85
6.3 Communication Strategies 85
7 Evaluation Using 100-Car Naturalistic Driving Data and Car Following Models 86
7.1 Improving MBC-Based Method with Network Awareness 92
7.2 Improvements to Tracking Accuracy 92
8 An Example of MBC with Model Construct Changes 93
8.1 Rules for Communication of Models 95
9 Concluding Remarks 95
References 97
Internet of Things 99
Urban Microclimate Monitoring Using IoT-Based Architecture 100
1 Introduction 100
2 Literature Review 102
3 Design of IoT-Based Architecture for Sensor Node 106
3.1 Hardware 108
3.2 Software 126
3.3 Testbed for IoT Applications 134
4 Implementation of Urban Microclimate Monitoring Using IoT-Based Architecture 137
4.1 Sensor Selection 137
4.2 Hardware Development 139
4.3 Software Development 139
4.4 Communication Module 141
4.5 Sensor Node Deployment 142
4.6 Data from a Sensor Node 143
5 Conclusion 144
References 146
Models for Plug-and-Play IoT Architectures 150
1 Peripheral Plug-and-Play (PnP) Definition and First Attempts 151
1.1 NuBus 151
1.2 MSX Bus 151
1.3 Micro Channel Bus 152
2 PnP Architectures 152
2.1 PnP Requirements in IoT 152
3 PnP General Architecture 155
3.1 Thing Identification 155
3.2 Thing Drivers 156
3.3 Thing Network Discovery and Operation 158
4 Plug-and-Play Models for IoT Applications 161
4.1 MicroPnP 161
4.2 IEEE 1451 Standard 1451sps0 165
4.3 The TEDS Structure 166
5 Conclusion 182
References 182
Digital Forensics for IoT and WSNs 186
1 Introduction 187
2 Digital Forensics 189
3 Related Background on IoT and WSNs 190
4 Applying Digital Forensics to IoT and WSNs 192
4.1 Challenges in IoT and WSN Forensics 193
4.2 Device-Level Investigation 198
4.3 Network-Level Investigation 203
4.4 Cloud-Level Investigation 213
4.5 Future Research 216
4.6 Conclusion 218
References 218
Dependable Wireless Communication and Localization in the Internet of Things 223
1 Introduction 224
2 Fundamentals of Wireless Propagation Channels 226
2.1 Modeling of Multipath Channels 226
2.2 Signal Classification in Terms of Bandwidth 229
3 Physical-Layer Signal Processing 230
3.1 Signal Processing for Wireless Communications 231
3.2 Signal Processing for Wireless Localization 235
4 Hardware 239
4.1 Transceivers 240
4.2 RF and Microwave Filters for the Internet of Things 244
4.3 Antennas 248
5 Networking 252
5.1 Impact of Medium Access Control on Dependability 253
5.2 Impact of Bandwidth on Dependability 255
5.3 Impact of Networking Design Space on Dependability 256
6 Conclusions and Future Work 263
References 264
Crowdsensing and Smart Cities 271
User Incentivization in Mobile Crowdsensing Systems 272
1 Introduction 273
2 Related Work 274
3 The Model 278
3.1 The Task 278
3.2 The Server 280
3.3 The Crowd 282
4 Performance Evaluation 283
4.1 Experimental Setup and Metrics 283
4.2 Incentive Policies' Performance 284
4.3 Workload Balance and Overall Task Quality 294
4.4 Utility Function and Incentive Policy Impact 295
5 Conclusions and Future Work 297
References 298
Vehicular Ad Hoc/Sensor Networks in Smart Cities 300
1 Introduction 300
2 Background 302
2.1 Architecture 302
2.2 Environment 303
2.3 DSRC/WAVE Protocol Stacks 304
3 Unique Challenges of Vehicular Networks 304
4 Routing in VANETs 307
4.1 Topology-Based (Ad Hoc) Routing Protocols 307
4.2 Position-Based Routing Protocols 308
4.3 Cluster-Based Routing Protocols 310
4.4 Broadcast-Based Routing Protocols 311
4.5 Infrastructure-Based Routing Protocols 313
5 Macro–Micro Model for Routing Protocols 315
5.1 State Awareness Routing Protocols 315
5.2 Macro–Micro Model 316
5.3 Mapping in Macro–Micro Model 317
6 Vehicular Sensing Applications 319
6.1 Safety Application 319
6.2 Non-safety Application 320
7 Conclusion and Future Research Directions 321
References 321
Wearable Computing 324
An Overview of Wearable Computing 325
1 Introduction 325
2 The History of Wearable Computing 326
2.1 Early Wearable Technology (1700–1907s) 327
2.2 Wearable Computing Using Modern Electronics (1960–2005) 329
2.3 Advanced Wearable Computing (2006–Present) 332
2.4 Lessons Learned from the History of Wearable Computing 337
3 Applications of Wearable Computing 341
3.1 Education 344
3.2 Health 344
3.3 Business and Manufacturing 346
3.4 Military 347
3.5 Personal Enhancement 348
4 Case Studies: Activity Recognition and Biometrics 348
4.1 Data Collection 349
4.2 Data Transformation 350
4.3 Activity Recognition Experiments and Results 351
4.4 Biometrics Experiments and Results 352
5 Summary and Future Directions 357
References 360
Wearables Security and Privacy 362
1 Introduction 362
2 Wearable Devices 365
2.1 Sensors 365
2.2 Signal Processing 371
2.3 Processors 372
2.4 Software 374
3 Wireless Communications Security 375
3.1 Bluetooth 376
3.2 Zigbee 379
3.3 IEEE 802.15.6 381
3.4 ANT+ 382
3.5 UWB 382
3.6 NFC 383
4 Device Security 384
4.1 System Security 384
4.2 Vulnerabilities 385
4.3 Malware 385
5 Privacy Issues 386
5.1 Access Controls 386
5.2 Outsourcing 387
5.3 Health-Related Information of Non-health-Related Applications 387
5.4 Tracking 387
6 Conclusions 388
References 388
Wearable Computing and Human-Centricity 392
1 Introduction 392
2 Definitions 393
3 What Is a Wearable Computer? 394
4 History of Wearable Computers 395
5 Wearable Device Interfaces 397
5.1 Wearable Interfaces by Modality 398
5.2 Examples of Modern Wearable Interfaces 402
6 Areas of Application 405
6.1 Fashion 405
6.2 Behavior Modification 406
6.3 Fitness 408
6.4 Assistive Devices 409
6.5 Navigation 410
7 Key Barriers to the Success of Wearable Computers 412
8 What Is Human-Centricity? 413
9 Concerns of Human-Centricity 414
9.1 Personal 414
9.2 Social 415
9.3 Cultural 416
9.4 Environmental 416
10 Universal Design Versus Human-Centric Design 417
11 Human-Centric Wearables 418
11.1 External Considerations 418
11.2 Internal Considerations 419
12 Conclusion 420
References 420
Wireless Charging and Energy Transfer 425
Wireless Transfer of Energy Alongside Information in Wireless Sensor Networks 426
1 Introduction 427
2 Related Work 429
2.1 Radio Frequency Identification (RFID) 429
2.2 WISP 429
2.3 Backscattering 430
2.4 Multi-path Energy Routing 430
2.5 Near-Field Communication (NFC) 430
2.6 Bokode 431
2.7 Microwave Power Transmission 431
2.8 Resonant Inductive Coupling 431
3 Consolidated Energy and Information Channels (CEICh) in Wireless Sensor Networks 432
3.1 Overview of CEICh 432
3.2 Design of CEICh 432
4 IPoint 438
4.1 Motivation and Possible Applications 438
4.2 Definition of the System with Respect to CEICh Design 439
4.3 Challenges and Approach 439
4.4 Our Solution 440
4.5 Detailed System Architecture 441
4.6 Multimodal Communications 443
4.7 Optimization Techniques 449
4.8 Summary 462
5 Conclusion and Future Research Directions 462
References 463
Efficient Protocols for Peer-to-Peer Wireless Power Transfer and Energy-Aware Network Formation 468
1 Introduction 469
2 Related Work 470
3 The Model 471
4 Problem Definition and Metrics 472
5 The Population Energy Balance Problem 474
5.1 Loss-Less Energy Transfer 474
5.2 Energy Transfer with Loss 477
6 The Energy-Aware Star Network Formation Problem 484
6.1 Full Transfer PFT 484
6.2 Half Transfer PHT 486
6.3 Degree Aware PDA 487
6.4 Fully Adaptive PFA 491
7 Performance Evaluation 493
7.1 The Population Energy Balance Problem 493
7.2 The Energy-Aware Star Network Formation Problem 497
8 Conclusion 510
References 510
Next-Generation Software-Defined Wireless Charging System 514
1 Introduction 514
2 Related Works 516
2.1 Energy Harvesting-Powered IoT 516
2.2 Distributed Wireless Energy Transfer 518
2.3 RF Energy Harvesting Circuits 519
2.4 Wireless Software-Defined Networking 519
3 DeepCharge Architecture Design 521
4 System Prototypes 524
4.1 Distributed Indoor Development 524
4.2 Self-powered Outdoor Development 529
4.3 RF Energy Harvesting Circuit Design 532
4.4 RF Energy Harvesting Circuit Evolutions 535
5 RF Exposure Safety and Scalability Analysis 540
6 Research Challenges 544
7 Conclusion 545
References 546
Robotics and Middleware 551
Robotic Wireless Sensor Networks 552
1 Introduction 553
2 What is an RWSN? 556
3 RWSN System Components 560
3.1 RSS Models, Measurements, and RF Mapping 560
3.2 Routing 563
3.3 Connectivity Maintenance 567
3.4 Communication-Aware Robot Positioning and Movement Control 572
3.5 Localization 579
4 RWSN Network Stack Layer Analysis 581
4.1 Internet Model for Network 583
4.2 An Unified System Architecture for RWSN 587
5 Collaborative Works on Networked Robots 588
6 Summary and Conclusion 589
References 591
Robot and Drone Localization in GPS-Denied Areas 603
1 Introduction 603
2 Robots and Drones 604
2.1 Autonomy 605
2.2 Form Factors 605
3 Localization in GPS-Denied Areas 607
4 Technologies for GPS-Less Localization 608
5 Radio Frequency Localization 608
5.1 Problems 609
5.2 Wi-Fi Localization 611
5.3 UWB Localization 613
5.4 LTE Localization 615
5.5 Cooperative Radio Frequency Localization 615
5.6 Range-Free Localization 618
6 Visual Localization and Navigation 620
6.1 Visual Markers 621
6.2 SLAM 624
6.3 Cooperative Visual Localization 626
6.4 Parallels with Visual Sensor Networks 627
7 Dead Reckoning and Filters 628
7.1 Dead Reckoning 628
7.2 Filtering and Estimation Techniques 629
8 Multi-robot Coordination 631
8.1 Centralized Coordination 631
8.2 Distributed Coordination 632
9 Open Challenges 633
10 Summary 633
References 633
Middleware for Multi-robot Systems 638
1 Introduction 639
2 Existing Multi-robot Systems and Applications 640
2.1 Existing Multi-robot Systems 641
2.2 Multi-robot System Applications 646
3 Design Goals for MRS Middleware 649
4 A Taxonomy of MRS Middleware 652
5 Representative Middleware for MRS 658
6 Future Directions and Challenges 671
References 673
Interference Mitigation, Radiation Control, and Encryption 679
Interference Mitigation Techniques in Wireless Body Area Networks 680
1 Wireless Body Area Networks Overview 681
1.1 Classification of WBANs 681
1.2 Communication Architecture of WBANs 686
2 Intra-WBAN Communication 687
3 Radio Co-channel Interference 690
3.1 Interference Between WBANs and Other Wireless Networks 692
3.2 Radio Co-channel Interference Among WBANs 692
3.3 Interference Mitigation Challenges 695
4 Co-channel Interference Mitigation Techniques 696
4.1 Resource Allocation 697
4.2 Power Control 702
4.3 Multiple Access 706
4.4 Link Adaptation 710
5 Conclusions and Future Research Directions 714
References 716
Radiation Control Algorithms in Wireless Networks 722
1 Introduction 723
2 Related Work 724
3 Radiation Awareness in Three-Dimensional Wireless Sensor Networks 727
3.1 Network Model and Radiation Definition 728
3.2 Point Radiation in Random Geometric Graphs 730
3.3 Point Radiation in Nearest Neighbor Random Graphs 733
3.4 Heuristics for MRP 736
3.5 A Linear Program for the Offline Optimum 739
3.6 Performance Evaluation 740
4 Low Radiation Efficient Wireless Energy Transfer in Wireless Distributed Systems 744
4.1 Network and Charging Model 745
5 Problem Statement and First Results 747
5.1 Computing the Objective Function 750
5.2 Computing the Maximum Radiation 751
5.3 A Local Improvement Heuristic for LREC 752
5.4 A Relaxation of LREC 752
5.5 Performance Evaluation 755
6 Conclusions 757
References 757
Subspace-Based Encryption 760
1 Introduction 760
2 Preliminaries 762
2.1 Cryptography 762
2.2 Cryptanalysis 763
2.3 Cryptanalysis Attacks 764
2.4 A Brief Reminder on Some Basics on Linear Algebra 766
3 Blind Source Separation in Cryptography 767
3.1 Blind Source Separation (BSS) 767
3.2 BSS-Based Encryption 767
3.3 Cryptanalysis of BSS-Based Encryption 768
3.4 Comments on Cryptanalysis of BSS-Based Encryption Scheme 772
4 Subspace-Based Encryption 773
4.1 Encryption 774
4.2 Decryption 775
5 Iterative Subspace-Based Encryption 776
5.1 Encryption 777
5.2 Decryption 777
6 Cryptographic Robustness of the Subspace-Based Encryption Systems 777
6.1 Interpretation of the Subspace-Based Encryption in Terms of Confusion and Diffusion Requirements 778
6.2 Cipher-Text-Only Attack 778
6.3 Differential Attack 782
7 Application and Performance Evaluation 783
7.1 Application to Speech Encryption 784
7.2 Application to Image Encryption 788
8 Conclusion 795
References 795

Erscheint lt. Verlag 18.9.2019
Reihe/Serie Studies in Systems, Decision and Control
Zusatzinfo XVIII, 794 p. 303 illus., 188 illus. in color.
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Mission-Oriented Wireless Sensor Networks • Networks • Sensor-Based Application Design • sensors • WSN
ISBN-10 3-319-92384-6 / 3319923846
ISBN-13 978-3-319-92384-0 / 9783319923840
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 28,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99