Microbial Fuel Cell Technology for Bioelectricity (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XVI, 311 Seiten
Springer International Publishing (Verlag)
978-3-319-92904-0 (ISBN)

Lese- und Medienproben

Microbial Fuel Cell Technology for Bioelectricity -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In view of the increased consumption of energy due to the proliferation of electronic devices, this book addresses the trends, similarities, differences and advances in fuel cells of both chemical and biological composition. Fundamentals of microbial fuel cells are described, accompanied by details surrounding their uses and limitations. Chapters on electricigens, microbial group investigations and performance, Rumen Fluid microbes and state-of-the-art advances in microbial fuel cell technology are discussed. The book elaborates upon analytical techniques used for biofilm characterization. It also includes chapters on MFC models that include plant-based MFCs, Algal/Fungi MFCs, MDCs and MFCs using animal waste. A critical review on the performance of MFC technology in field trials is offered in an exclusively dedicated section. By addressing one of the most promising sources for clean and renewable energy, this book fills a pressing need to understand a possible solution for meeting the energy demands in our highly advanced technical world.



Dr. Venkataraman Sivasankar received his doctorate in Chemistry in 2009 from Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. Presently, he is a Post-Doctoral Fellow in the Department of Civil Engineering, Nagasaki University, Nagasaki, Japan. He has been a faculty member in the Department of Chemistry in Pachaiyappa's College, Chennai, India since 2014. His research areas include materials synthesis and wastewater treatment. He received the prestigious JSPS fellowship in 2016. To his credit, he has more than 50 research articles in Peer - Reviewed journals and five book chapters in volumes with of renowned publishers. He edited a book on Surface Modified Carbons as Scavengers of Fluoride from Water in 2016 with Springer. He collaborates and performs research with professors in universities and research laboratories in Algeria, France, Japan, Iran and South Africa.

Dr. M. Prabhakaran is an Assistant Professor of Botany in Pachaiyappa's College, Chennai, Tamil Nadu, India. He completed his doctorate in 2012 at the University of Madras, Chennai, India. His research focus is on algal bio-technology which includes algal MFCs. He was awarded the DST - SERB Young Scientist Award in 2013. He has been accredited with a major project (DST) and a minor project from UGC. He is credited with 15 original research papers in national and international peer-reviewed journals, one authored book and five book chapters.  

Dr. Kiyoshi Omine is a professor in the Department of Civil Engineering, Graduate School of Engineering, Nagasaki University, Nagasaki, Japan. His research areas of interest include soil microbial fuel cells for composting and power regeneration, geo-technical utilization of waste materials and geo-environmental improvement techniques. He is a member of several technical societies of Japan. He has authored and co-authored more than 50 research papers in national and international peer-reviewed journals. He is credited with mentoring three JSPS fellows in Kyushu and Nagasaki Universities.

Dr. Venkataraman Sivasankar received his doctorate in Chemistry in 2009 from Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. Presently, he is a Post-Doctoral Fellow in the Department of Civil Engineering, Nagasaki University, Nagasaki, Japan. He has been a faculty member in the Department of Chemistry in Pachaiyappa’s College, Chennai, India since 2014. His research areas include materials synthesis and wastewater treatment. He received the prestigious JSPS fellowship in 2016. To his credit, he has more than 50 research articles in Peer – Reviewed journals and five book chapters in volumes with of renowned publishers. He edited a book on Surface Modified Carbons as Scavengers of Fluoride from Water in 2016 with Springer. He collaborates and performs research with professors in universities and research laboratories in Algeria, France, Japan, Iran and South Africa.Dr. M. Prabhakaran is an Assistant Professor of Botany in Pachaiyappa’s College, Chennai, Tamil Nadu, India. He completed his doctorate in 2012 at the University of Madras, Chennai, India. His research focus is on algal bio-technology which includes algal MFCs. He was awarded the DST – SERB Young Scientist Award in 2013. He has been accredited with a major project (DST) and a minor project from UGC. He is credited with 15 original research papers in national and international peer–reviewed journals, one authored book and five book chapters.   Dr. Kiyoshi Omine is a professor in the Department of Civil Engineering, Graduate School of Engineering, Nagasaki University, Nagasaki, Japan. His research areas of interest include soil microbial fuel cells for composting and power regeneration, geo-technical utilization of waste materials and geo-environmental improvement techniques. He is a member of several technical societies of Japan. He has authored and co-authored more than 50 research papers in national and international peer–reviewed journals. He is credited with mentoring three JSPS fellows in Kyushu and Nagasaki Universities.

Dedication 5
Foreword 6
Preface 8
Contents 11
About the Editors 13
Chapter 1: Biologically Renewable Resources of Energy: Potentials, Progress and Barriers 15
1.1 Introduction 15
1.1.1 Energy 15
1.1.2 Energy Resources and Sustainable Development 16
1.1.3 Current Scenario of World’s Energy Usage 16
1.2 Renewable Energy Resources 18
1.2.1 Potential of Biological Energy Resources 18
1.2.2 Potential and Progress of Biomass Utilization as Biofuel 20
1.2.3 Production of Ethanol from Biomass 21
1.2.4 Production of Biodiesel from Biomass 24
1.2.4.1 Production of Biodiesel from Microalgae 24
1.2.4.2 Current Progress in Biodiesel Production 28
1.2.4.3 Challenges with the Commercialization of Biodiesel 28
Harvesting 29
Drying 29
1.2.5 Production of Biogas from Biomass 30
1.3 Barriers of Utilization of Renewable Biological Energy Resources for Fuel Production 30
1.4 Future Possibilities of Utilization of Renewable Biological Energy Resources for Fuel Production 31
1.5 Concluding Remarks 31
References 32
Chapter 2: Microbial Fuel Cells: Fundamentals, Types, Significance and Limitations 37
2.1 Introduction 37
2.2 Basic Configuration and Mechanism of MFC 39
2.2.1 Anode Chamber 39
2.2.2 Cathode Chamber 42
2.2.3 Separator Membrane 42
2.3 Mechanism of Pre-Treatment for Increased Power Output 43
2.3.1 Pre-Treatment of Electrode for Increased Power Output 44
2.3.2 Pre-Treatment of Substrate for Increased Power Output 44
2.3.2.1 Physical/Chemical Pre-Treatment 44
2.3.2.2 Biological Treatment 45
2.4 Classification 45
2.4.1 Based on Mediator 45
2.4.2 Based on Dependency of Microbial Nutrition 49
2.4.2.1 Phototrophic MFC 49
2.4.2.2 Heterotrophic MFC 50
2.4.2.3 Mixotrophic MFC 50
2.4.3 Based on Dependency of Light 51
2.4.4 Based on Dependency of Temperature 51
2.4.5 Based on Configuration 52
2.5 Proposed Application of MFC 52
2.6 Barriers and Challenges in MFC 54
2.7 Conclusion 55
References 55
Chapter 3: Plant Microbial Fuel Cell Technology: Developments and Limitations 63
3.1 Introduction 63
3.2 General Architecture of a Plant Microbial Fuel Cell 64
3.3 Anode Materials for Plant Microbial Fuel Cells 65
3.4 Cathode Materials for Plant Microbial Fuel Cells 72
3.5 Plants Used in MFC Systems 72
3.6 Microbial Community Found in Plant Microbial Fuel Cells 73
3.7 Improvements, Limitations, and Future Research for Plant Microbial Fuel Cells 73
References 75
Chapter 4: Current Advances in Paddy Plant Microbial Fuel Cells 80
4.1 Introduction 80
4.2 Test Materials and Methods 81
4.3 Results and Discussion 85
4.3.1 Experiment Using Bucket of 13 L with Carbon Fiber and Activated Bamboo Charcoal as Electrodes 85
4.3.2 Experiment Using PET Bottle of 500 mL with Activated Bamboo Charcoal for Anode and Cathode 86
4.4 Conclusions 90
References 92
Chapter 5: Algal Microbial Fuel Cells—Nature’s Perpetual Energy Resource 94
5.1 Current Scenario 94
5.1.1 Microbial Fuel Cells (MFCs) 95
5.1.2 Algae 96
5.1.3 Experimental Setup of MFCs 97
5.2 Electrode Materials 98
5.2.1 Properties of Electrode Materials 98
5.3 Materials Used for the Anode 99
5.4 Materials Used for the Cathode 100
5.5 Membranes 101
5.6 Integration of Algae in MFCs 101
5.7 Different Types of PMFC Configurations 102
5.8 Coupled PMFCs 103
5.9 Single-Chambered PMFCs 105
5.10 Dual-Chambered PMFCs 106
5.11 Sediment MFCs (SMFCs) 112
5.12 Twelve-Reactor Algal Fuel Cells 113
5.13 Nine-Cascade Algal Fuel Cells 114
5.14 Anode Assistance with Phototrophic Microorganisms 115
5.15 Anode-Assisted Electrochemical Catalysis 115
5.16 Substrates as End Products 117
5.17 Cathode Assistance with Phototrophic Microorganisms 117
5.18 Oxygen Production 117
5.19 Carbon Dioxide Utilization 118
5.20 Production of Biomass 119
5.21 Treatment of Wastewater 120
5.22 Illumination Effects 120
5.23 Challenges and Prospects 121
5.24 Future Perspectives of PMFCs 122
5.25 Conclusion 123
References 124
Chapter 6: Fungal Fuel Cells: Nature’s Perpetual Energy Resource 130
6.1 Microbial Fuel Cell: Brief Introduction 130
6.2 Introduction to Fungal Microbial Fuel Cell 131
6.3 Microbial Fuel Cell with Fungal Biofilm as Bio-anode 132
6.4 Biodegradation Using Fungal MFC Yielding By-Products 134
6.5 Fungi as Biocatalyst for Air-Cathode MFC 138
6.6 Fungal Enzyme-Based MFC 139
6.7 Microbial Fuel Cell with Fungal Biofilm as Bio-cathode 140
6.8 Fungi-Bacteria-Assisted MFC for Bioenergy Production 142
6.9 Liquid Fungal Cultures as Anolyte and Catholyte in MFC 144
6.10 Fungal Microbial Fuel Cell for Bioenergy Production 144
6.11 Future Perspectives and Challenges 145
6.12 Conclusion 146
References 146
Chapter 7: Bioelectricity Generation in Soil Microbial Fuel Cells Using Organic Waste 149
7.1 Introduction 149
7.2 Test Materials and Methods 150
7.3 Results and Discussion 151
7.3.1 Influence of Leaf Mould 151
7.3.2 Influence of Photosynthetic Bacteria 153
7.3.3 Influences of Rice Bran 154
7.3.4 Influences of Aerobic Condition 155
7.3.5 Influence Due to the Distance Between the Electrodes 156
7.3.6 Influence of Anode Modified with Iron Winding 158
7.3.7 Power Generation 160
7.4 Conclusions 161
References 161
Chapter 8: Microbial Fuel Cell Research Using Animal Waste: A Feebly-Explored Area to Others 163
8.1 Introduction 163
8.1.1 Microbial Fuel Cells in Waste Management 164
8.2 Energy Production from Various Sources 165
8.2.1 Sewage Sludge 166
8.2.2 Domestic Waste 167
8.2.2.1 Kitchen and Bamboo Waste 169
8.2.3 Industrial Waste 169
8.2.3.1 Winery Wastewater 170
8.2.3.2 Brewery Wastewater 170
8.2.3.3 Food Industry 170
8.2.3.4 Potato-Processing Wastewater 171
8.2.3.5 Dairy Industry 171
8.2.4 Animal Waste 172
8.2.4.1 Slaughterhouse Wastewater 172
8.2.4.2 Swine Wastewater Treatment 173
8.2.5 Agrowaste Industries 174
8.2.6 Marine Sediments 174
8.3 Rumen Waste in MFC 175
8.3.1 Rumen Fluid as a Cheap Energy Source 175
8.3.1.1 Pros and Cons of Using Animal Waste 175
8.4 Conclusion 176
References 176
Chapter 9: Electricigens: Role and Prominence in Microbial Fuel Cell Performance 181
9.1 Introduction 181
9.2 Electricigens 182
9.2.1 Electron Transport Mechanism 182
9.2.2 Etymology of Microbes in Microbial Fuel Cell 182
9.3 Pioneering Microbes 185
9.3.1 Geobacter sp. and Shewanella sp. 186
9.3.2 Pseudomonas sp. 186
9.3.3  Clostridium sp. 187
9.3.4 Enterobacter Species 187
9.3.5 Aeromonas Species 188
9.3.6 Saccharomyces cerevisiae 188
9.3.7 Other Microbes 189
9.4 Characterization of Biofilm 189
9.4.1 Scanning Electron Microscopy 189
9.4.2 Atomic Force Spectroscopy 190
9.4.3 Confocal Scanning Laser Microscopy 191
9.4.4 Thermogravimetric Analysis 191
9.4.5 DGGE and Sequence Analysis 192
9.5 Summary and Conclusion 192
References 193
Chapter 10: Rumen Fluid Microbes for Bioelectricity Production: A Novel Approach 198
10.1 Introduction 198
10.1.1 Optimization of Parameters for the Increased Electricity Production by the Microbial Fuel Cell Using Rumen Fluid 199
10.1.1.1 Scale-Up of MFC with Rumen Fluid 201
10.1.2 Comparative Analysis of Power Production of Pure, Co-culture, and Mixed Culture in Microbial Fuel Cell 202
10.1.2.1 Bacterial Strains 202
10.1.2.2 Brief Pure Culture Study in Terms of Voltage Production and Cyclic Voltammogram 203
10.1.2.3 Co-culture and Mixed Culture Studies 206
10.1.2.4 SEM Analysis 207
10.1.2.5 Production of Bioelectricity in MFC by Pseudomonas fragi DRR-2 (Psychrophilic) Isolated from Goat Rumen Fluid 208
10.1.2.6 Growth Curve and Protein Content of Pseudomonas fragi DRR-2 at Different Temperatures 209
Power Production of the Bacterium Under Different Temperatures Using Salt Bridge and Nafion 117 209
Cyclic Voltammogram of the Strain in Low Temperatures 210
10.1.3 Performance of Paracoccus homiensis DRR-3 in Microbial Fuel Cell with Membranes 210
10.1.3.1 Power Production of Paracoccus homiensis DRR-3 with Nafion 117 in MFC 210
10.1.3.2 Power Production of Paracoccus homiensis DRR-3 with PVDF and PCZ in MFC 212
10.1.4 Membranes, Their Performance, Electrochemical Analysis in MFC 213
10.1.4.1 Cyclic Voltammogram of P. homiensis Using Membranes 213
10.1.4.2 Impedance Spectra of P. homiensis Using Membranes 213
10.1.5 Applications of Rumen Fluid MFC 215
10.2 Summary and Conclusion 216
References 217
Chapter 11: Advances in Concurrent Bioelectricity Generation and Bioremediation Through Microbial Fuel Cells 221
11.1 Introduction 221
11.2 Improvement in the Microbial Fuel Cell Technology for Bioremediation 222
11.3 Design of Microbial Fuel Cell 223
11.4 Electrode Materials 224
11.4.1 Anode Materials 225
11.4.1.1 Role of Anode in Bioremediation 228
11.4.2 Cathode Materials 228
11.4.2.1 Role of Cathode in Bioremediation 231
11.4.3 Membrane Material 231
11.5 Types of Waste Materials Used as Substrates in MFC 231
11.6 Types of Microbial Fuel Cell for Bioremediation of Pollutants 235
11.6.1 Anaerobic Microbial Fuel Cell (ANMFC) 235
11.6.2 Sediment Microbial Fuel Cell (SMFC) 235
11.6.3 Benthic Microbial Fuel Cells (BMFC) 236
11.6.4 Enzyme-Based Microbial Fuel Cells (EBC) 236
11.6.5 Air-Breathing Cathode-Based Microbial Fuel Cells (ABC-MFC) 237
11.6.6 Constructed Wetland Microbial Fuel Cells (CW-MFC) 238
11.6.7 Thermophilic Microbial Fuel Cells (TMFC) 238
11.7 Commercial Application of MFC and Economic Feasibility 239
11.8 Future Prospects and Directions 239
References 240
Chapter 12: Microbial Desalination Cells: A Boon for Future Generations 250
12.1 Introduction 250
12.1.1 Microbial Desalination Cell 251
12.1.1.1 Materials: Electrodes, Anolyte, Separating Membrane 252
12.1.1.2 Substrate/Anolyte/Catholyte 252
12.1.2 MDC Designs 254
12.1.2.1 Biocathode MDC 254
12.1.2.2 Photosynthetic MDC 254
12.1.2.3 Stacked MDC 255
12.1.2.4 Supercapacitive MDC 255
12.1.3 Pros and Cons of MDC 255
12.1.4 Future of MDC 256
12.2 Summary and Conclusion 256
References 256
Chapter 13: The Performance of Microbial Fuel Cells in Field Trials from a Global Perspective 259
13.1 Microbial Fuel Cells (MFC): A Sustainable Solution for Energy Demand 259
13.2 Why Microbial Fuel Cells (MFCs)? 260
13.3 From Laboratory to Pilot Scale: In Nutshell 261
13.4 Qualities of MFCs 262
13.5 Source of Green Energy 263
13.6 Generating Power While Treating Wastes 263
13.7 Reactor Design for Pilot-Scale Process 265
13.7.1 Single-Chamber MFCs 266
13.7.2 Two-Chamber MFCs 268
13.7.3 Vertical or Upflow Chamber MFCs 269
13.7.4 Stacked MFCs 270
13.7.5 Flat-Plate Microbial Fuel Cells (FPMFCs) 273
13.8 Field Trials of MFCs 275
13.8.1 Application of MFC for Wastewater Treatment 275
13.8.2 Constructed Wetlands 276
13.8.3 Small Island 277
13.8.4 Domestic Wastewater 279
13.8.5 Brewery and Winery Industries 280
13.8.6 Agro-Food and Dairy Industries 281
13.9 Problems Associated with Pilot-Scale Studies 282
13.10 Solutions at Laboratory Level 282
13.11 Future Perspectives 285
References 285
Chapter 14: Future Perspectives on Cost-Effective Microbial Fuel Cells in Rural Areas 291
14.1 Introduction 291
14.2 MFC and its Types (at Pilot Scale) 292
14.2.1 Benthic MFC 295
14.2.2 Submersible MFC 296
14.2.3 Photosynthetic (Plant and Algal) MFC 296
14.2.4 Stacked and Multi-electrode MFC 297
14.2.5 Other Hybrid MFCs 298
14.3 Cost-Effective Resources for MFC Technology 299
14.4 Scaling Up for Commercialization 300
14.4.1 Enhanced Power Generation 300
14.4.2 Low Input Costs 301
14.4.3 Long-term Stability 301
14.4.4 Power Output Management 302
14.5 Integrated Centralized MFC System 302
14.6 Implementation in Rural Areas 303
14.6.1 Loan from Banks and Easy Return Agreement 305
14.6.2 Government Schemes and Subsidies 305
14.7 Conclusion 306
References 306
Correction to: Future Perspectives on Cost-Effective Microbial Fuel Cells in Rural Areas 311
Index 312

Erscheint lt. Verlag 2.8.2018
Zusatzinfo XVI, 311 p. 95 illus., 86 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte Bioelectricity • Bioelectrogenesis • Biofilm • bioremediation • Bioresources • Electron Transfer • Environmental Chemistry • Green Energy • Microbial fuel cell • waste management
ISBN-10 3-319-92904-6 / 3319929046
ISBN-13 978-3-319-92904-0 / 9783319929040
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 10,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99