Advanced Machining and Manufacturing Processes (eBook)

eBook Download: PDF
2018 | 1. Auflage
XVIII, 213 Seiten
Springer-Verlag
978-3-319-76075-9 (ISBN)

Lese- und Medienproben

Advanced Machining and Manufacturing Processes -  Kaushik Kumar,  Divya Zindani,  J. Paulo Davim
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers the various advanced manufacturing processes employed by manufacturing industries to improve their productivity in terms of socio-economic development.

The authors present automated conventional and non-conventional machining techniques as well as virtual machining principles and techniques. Material removal by mechanical, chemical, thermal and electrochemical processes are described in detail. 

A glossary of key concepts is attached at end of the book. 



Kaushik Kumar is an Associate Professor in the Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, India. His areas of teaching and research interest are CAD / CAM, Quality Management Systems, Optimization, Non-conventional machining, Rapid Prototyping and Composites.

Divya Zindani is a PhD student working on Manufacturing Engineering, Industrial Engineering, CAD/CAM/CAE and Rapid  Prototyping.

J. Paulo Davim is a Professor at the Department of Mechanical Engineering of the University of Aveiro. He has about 30 years of teaching and research experience in Manufacturing, Materials and Mechanical Engineering with special emphasis in Machining & Tribology. 

Kaushik Kumar is an Associate Professor in the Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, India. His areas of teaching and research interest are CAD / CAM, Quality Management Systems, Optimization, Non-conventional machining, Rapid Prototyping and Composites. Divya Zindani is a PhD student working on Manufacturing Engineering, Industrial Engineering, CAD/CAM/CAE and Rapid  Prototyping. J. Paulo Davim is a Professor at the Department of Mechanical Engineering of the University of Aveiro. He has about 30 years of teaching and research experience in Manufacturing, Materials and Mechanical Engineering with special emphasis in Machining & Tribology. 

Preface 6
Contents 10
About the Authors 17
Automated Conventional Machining Techniques 19
1 Machine Tools: Numerical Control Perspective 20
1.1 Introduction 20
1.2 Material Removal Techniques 21
1.3 Form and Size 22
1.4 Kinematics Principles of Machining Operation 23
1.4.1 Generation 23
1.4.2 Copying 24
1.4.3 Forming 24
1.4.4 Surface Texture 24
1.5 Conclusion 25
2 Machine Tool Controls 26
2.1 Introduction 26
2.2 Levels of Control 26
2.2.1 Zero Level of Control 26
2.2.2 First Level of Control 27
2.2.3 Second Level of Control 27
2.2.4 Third Level of Control 28
2.2.5 Fourth Level of Control 28
2.2.6 Fifth Level of Control: Numerical Control 28
2.3 Computer Numerical Control 29
2.3.1 Functions of CNC 29
2.3.1.1 Controlling Machine Tool 29
2.3.1.2 In-Process Compensation 30
2.3.1.3 Diagnostics 30
2.3.2 Advantages of CNC Systems 31
2.4 Direct Numerical Control 31
2.4.1 Components of DNC Systems 31
2.4.2 Functions of DNC 32
2.4.2.1 NC Without Punched Tape 32
2.4.2.2 Storage of NC Part Program 32
2.4.2.3 Collection, Processing and Reporting of Data 33
2.4.2.4 Communication 33
2.4.3 Advantages of DNC 33
2.5 Adaptive Control of Machining Systems 34
2.6 Conclusion 35
3 Introduction to Numerical Control Machines 36
3.1 Introduction 36
3.2 Basic Components of NC System 37
3.2.1 Program of Instructions 37
3.2.2 Controller Unit 37
3.2.3 Machine Tool 38
3.3 NC Procedure 39
3.3.1 Process Planning 39
3.3.2 Part Programming 39
3.3.3 Tape Preparation 39
3.3.4 Tape Verification 40
3.3.5 Production 40
3.4 NC Coordinate System 40
3.5 NC Motion Control Systems 41
3.5.1 Point-to-Point NC 42
3.5.2 Straight Cut NC 42
3.5.3 Contouring NC 42
3.6 Applications of NC Systems 43
3.7 Advantages of NC Systems 43
3.8 Disadvantages 44
4 Fundamentals of Part Programming 45
4.1 Introduction 45
4.2 Part Programming with CNC Lathe 45
4.2.1 Co-ordinate System for a CNC Lathe 45
4.2.2 Dimensioning Basics 46
4.2.3 Miscellaneous and Preparatory Functions 46
4.2.4 Part Programming for Turning Operation 46
4.3 Part Programming with CNC Milling 49
4.3.1 Miscellaneous and Preparatory Functions 49
4.3.2 Part Programming for Linear and Circular Interpolation Using Milling Operation 49
4.4 Part Programming with Electrical Discharge Machining (EDM) 50
4.4.1 Program for Z Depth 50
4.5 Conclusion 53
Non Conventional Machining Techniques 54
5 Introduction to Machining Processes 55
5.1 Introduction 55
5.2 History of Machining 55
5.3 Traditional Machining 57
5.3.1 Machining by Abrasion 57
5.3.2 Machining by Cutting 58
5.4 Non Traditional Machining 58
5.4.1 Single Action Nontraditional Machining 59
5.4.1.1 Thermal Machining 59
5.4.1.2 Mechanical Machining 59
5.4.1.3 Chemical and Electrochemical Machining 60
5.4.2 Hybrid Machining 60
5.4.2.1 Hybrid Thermal Process 60
5.4.2.2 Hybrid Thermal Electrochemical and Chemical Processes 60
References 61
6 Mechanical Machining 62
6.1 Introduction 62
6.2 Ultrasonic Machining 62
6.2.1 Introduction 62
6.2.2 Main Elements of an USM Tool 64
6.2.2.1 The Power Supply System 64
6.2.2.2 The Magnetostrictor 65
6.2.2.3 The Mechanical Amplifier 65
6.2.2.4 Tools 66
6.2.2.5 Abrasive 66
6.2.3 The Material Removal Process and Models for MRR 67
6.2.4 The Operating Characteristics of USM 68
6.2.4.1 Properties of Workpiece 68
6.2.4.2 Tool Characteristics 68
6.2.4.3 Slurry Properties 69
6.2.4.4 Operating Parameters 70
6.2.5 Surface Quality and Dimensional Accuracy 71
6.2.5.1 The Surface Quality 71
6.2.5.2 The Dimensional Accuracy 72
6.2.6 Applications 72
6.2.6.1 Rotary Ultrasonic Machining 73
6.2.6.2 Micro-ultrasonic Machining 74
6.2.6.3 Ultrasonic Polishing 74
6.2.6.4 Hybridization of USM 74
6.3 Water Jet Machining (WJM) 75
6.3.1 Introduction 75
6.3.2 Main Elements of Water Jet Machining 76
6.3.2.1 Pump 76
6.3.2.2 Intensifier 76
6.3.2.3 Accumulator 77
6.3.2.4 High-Pressure Tubing 77
6.3.2.5 Cutting Nozzle 77
6.3.2.6 Catcher 77
6.3.3 Process Parameters 78
6.3.3.1 Jet Nozzle 78
6.3.3.2 Jet Fluid 78
6.3.3.3 Workpice Material 78
6.3.4 Applications 79
6.3.4.1 Water Jet Cutting of Stones 79
6.3.4.2 Water Jet Cutting of Glass 79
6.3.4.3 Water Jet Cutting of Metal 79
6.3.4.4 Water Jet Cutting of Foods 80
6.3.4.5 Water Jet Cutting for Automotive Industry 80
6.3.4.6 Water Jet Cutting of Rubber and Composites 80
6.3.4.7 Water Jet Cutting for Surface Treatment 80
6.3.5 Advantages and Disadvantages of Water Jet Machining 81
6.3.5.1 Advantages 81
6.3.5.2 Disadvantages 81
6.4 Abrasive Jet Machining (AJM) 82
6.4.1 Introduction 82
6.4.2 Main Elements of AJM 82
6.4.2.1 Gas Propulsion System 83
6.4.2.2 Abrasive Feeder 83
6.4.2.3 Nozzle 83
6.4.2.4 Abrasive 83
6.4.2.5 Machining Chamber 84
6.4.3 Material Removal Rate in AJM and Machining Characteristics 84
6.4.3.1 The Effect on MRR of Abrasive Flow Rate and Grain Size 84
6.4.3.2 The Effect of Abrasive Particle Density and Exit Gas Velocity 85
6.4.3.3 Effect on MRR of Nozzle Pressure 85
6.4.3.4 Standoff Distance 85
6.4.4 Applications 85
6.4.5 Advantages and Disadvantages of AJM 86
6.4.5.1 Advantages of the AJM Process 86
6.4.5.2 Disadvantages of the AJM Process 86
6.5 Abrasive Water Jet Machining (AWJM) 87
6.5.1 Introduction 87
6.5.2 Construction and Working of AWJM 87
6.5.2.1 Reservoir 88
6.5.2.2 Hydraulic Pump 88
6.5.2.3 Intensifier 88
6.5.2.4 Accumulator 88
6.5.2.5 Flow Regulator and Control Valve 88
6.5.2.6 Nozzle 88
6.5.2.7 Mixing Tube 88
6.5.2.8 Catchers 89
6.5.3 Working of AWJM Process 89
6.5.4 Nozzle Characteristics 89
6.5.5 Application of AWJM Process 90
6.5.5.1 AWJM for Advanced Ceramic Materials 90
6.5.5.2 AWJM for Composite Materials 91
6.5.5.3 Abrasive Water Jet Turning (AWJT) 91
6.5.6 Advantages and Disadvantages of AWJM 92
6.5.6.1 Advantages of AWJM 92
6.5.6.2 Disadvantages of AWJM 92
6.6 Ice Jet Machining (IJM) 93
6.7 Magnetic Abrasive Finishing (MAF) 94
6.7.1 Introduction 94
6.7.2 Working Principle of MAF 94
6.7.3 Material Removal in MAF 94
6.7.4 Applications of MAF 95
6.7.4.1 MAF of Rollers 95
6.7.4.2 MAF of Cutting Tools for Machining of Titanium Alloys 96
6.7.4.3 Micro Deburring for Precision Parts with MAF 96
6.7.4.4 MAF for Internal Finishing of Capillary Tubes 96
6.7.5 Advantages and Disadvantages of MAF 97
6.7.5.1 Advantages of MAF 97
6.7.5.2 Disadvantages of MAF 97
References 97
7 Chemical Machining 102
7.1 Introduction 102
7.2 Chemical Milling 102
7.2.1 Introduction 102
7.2.2 Tools for Chemical Milling 104
7.2.2.1 Maskants 105
7.2.2.2 Etchants 105
7.2.2.3 Scribing Templates 106
7.2.2.4 Accessories 106
7.2.3 Process Parameters in Chemical Milling 106
7.2.4 Material Removal Rate 106
7.2.5 Surface Finish and Accuracy in Chemical Milling 107
7.2.6 Advantages and Disadvantages of Chemical Milling 108
7.2.6.1 Advantages 108
7.2.6.2 Disadvantages 108
7.2.7 Applications 109
7.3 Photochemical Milling 109
7.3.1 Introduction 109
7.3.2 Process Outline 110
7.3.3 Applications 110
7.3.4 Advantages and Limitations 112
7.3.4.1 Advantages 112
7.3.4.2 Disadvantages 112
7.4 Electropolishing 113
7.4.1 Introduction 113
7.4.2 Surface Phenomenon Occurring During Electropolishing 113
7.4.3 Electrolyte, Cathode and Viscous Layer 114
7.4.4 Parameters Governing the Performance 115
7.4.5 Applications 115
7.4.6 Advantages and Limitations 116
7.4.6.1 Advantages 116
7.4.6.2 Limitations 116
References 116
8 Electrochemical Processes 118
8.1 Introduction 118
8.2 Electrochemical Machining 118
8.2.1 Introduction 118
8.2.2 Theoretical Background 119
8.2.3 Working Principle of ECM 120
8.2.4 Machining Equipments of ECM 121
8.2.4.1 Electrolytes 121
8.2.4.2 Tools 122
8.2.5 Characteristics of ECM 122
8.2.5.1 Material Removal Rate 122
8.2.5.2 Surface Finish 123
8.2.5.3 Accuracy of ECM 124
8.2.6 Applications 125
8.2.6.1 Smoothing of Rough Surfaces 125
8.2.6.2 Drilling of Holes 126
8.2.6.3 Full-Form Shaping 126
8.2.7 Advantages and Disadvantages of ECM 127
8.2.7.1 Advantages 127
8.2.7.2 Disadvantages 127
8.3 Electrochemical Drilling 127
8.4 Shaped Tube Electrolytic Machining 129
8.5 Electro Stream (Capillary) Drilling 131
8.6 Electrochemical Jet Drilling 133
8.7 Electrochemical Deburring 134
8.7.1 Working Mechanism of ECD 135
8.7.2 Advantages 135
References 135
9 Thermal Processes 136
9.1 Introduction 136
9.2 Electrodischarge Machining 136
9.2.1 Introduction 136
9.2.2 Process Mechanism 137
9.2.3 The Machining System 139
9.2.4 Power Supply 139
9.2.5 Electrodes 139
9.2.6 Dielectric Fluids 140
9.2.7 Material Removal 141
9.2.8 Surface Integrity 141
9.2.9 Heat Affected Zone 142
9.2.10 Applications 143
9.2.10.1 Electrodischarge Drilling (EDD) 143
9.2.10.2 Electrodischarge Milling 143
9.2.10.3 Texturing 144
9.2.10.4 Micro EDM 144
9.2.11 Advantages and Disadvantages of EDM 145
9.2.11.1 Advantages 145
9.2.11.2 Disadvantages 146
9.3 Laser Beam Machining 146
9.3.1 Introduction 146
9.3.2 Principles of LBM 147
9.3.3 LBM Variations 149
9.3.4 Laser-Based Cross/Hybrid/Assisted Machining 150
9.3.5 LBM Applications 151
9.3.6 Advantages and Disadvantages 152
9.3.6.1 Advantages 152
9.3.6.2 Disadvantages 152
9.4 Electron Beam Machining 152
9.4.1 Introduction 152
9.4.2 Machine Set up and Material Removal Process 152
9.4.3 Applications 155
9.4.3.1 Slotting 155
9.4.3.2 Perforations in Thin Sheets 155
9.4.3.3 Scaffolds for Orthopedic Applications 155
9.4.3.4 Electron Beam Welding 156
9.4.4 Advantages and Disadvantages 156
9.4.4.1 Advantages 156
9.4.4.2 Disadvantages 157
9.5 Plasma Beam Machining 157
9.5.1 Introduction 157
9.5.2 The Machining System 157
9.5.2.1 Plasma Arc 158
9.5.2.2 Plasma Jet 158
9.5.2.3 Air Plasma 158
9.5.2.4 Shielded Plasma 158
9.5.3 Material Removal Rate 159
9.5.4 Applications 159
9.5.5 Advantages and Disadvantages 160
9.5.5.1 Advantages 160
9.5.5.2 Disadvantages 160
9.6 Ion Beam Machining (IBM) 160
9.6.1 Introduction 160
9.6.2 Material Removal Rate 161
9.6.3 Accuracy and Surface Effects 161
9.6.4 Applications 161
References 162
10 Hybrid Electrochemical Process 166
10.1 Introduction 166
10.2 Electrochemical Grinding 167
10.2.1 Introduction 167
10.2.2 Material Removal Rate 168
10.2.3 Accuracy and Surface Quality 169
10.2.4 Applications 169
10.2.5 Advantages and Disadvantages 170
10.2.5.1 Advantages 170
10.2.5.2 Disadvantages 170
10.3 Electrochemical Honing 170
10.3.1 Introduction 170
10.3.2 Process Characteristics 171
10.3.3 Applications 172
10.3.3.1 Finishing of Gears by ECH 172
10.3.4 Advantages and Limitations 173
10.3.4.1 Advantages 173
10.3.4.2 Disadvantages 173
10.4 Electrochemical Superfinishing 173
10.4.1 Introduction 173
10.4.2 Material Removal Process 174
10.5 Electrochemical Buffing 175
10.5.1 Introduction 175
10.5.2 Material Removal Process 176
10.6 Ultrasonic-Assisted ECM 176
10.6.1 Introduction 176
10.6.2 Material Removal Process 177
10.7 Laser-Assisted ECM 178
References 178
Virtual Manufacturing 180
11 Introduction to Virtual Manufacturing 181
11.1 Introduction 181
11.2 Taxonomy for Virtual Manufacturing and Virtual Machine Tool 182
11.3 Virtual Reality Based Systems 183
11.4 Web Based Systems 184
11.5 Mathematical Modeling 187
11.6 Hardware Interaction 188
11.7 Conclusion 190
References 190
12 Virtual Manufacturing of Transmission Elements: A Case Study with Gears 193
12.1 Introduction 193
12.2 Methodology Adopted 194
12.2.1 Generation of Spur Gear 194
12.2.2 Generation of Helical Gears 194
12.3 Process of Chip Formation 195
12.3.1 Type of Chip 195
12.3.2 Path of Chip Movement 195
12.3.3 Chip Thickness and Chip Curling 195
12.3.4 Contraction of Chip 197
12.4 Software 197
12.4.1 Start Module 198
12.4.2 Input Module 198
12.4.3 Cutter Generation Module 201
12.4.3.1 Disc Type Form Milling Cutter 202
12.4.4 Gear Generation Module 203
12.4.5 Virtual Manufacturing Module 204
12.4.6 Special Module 204
12.4.6.1 Material 204
12.4.6.2 Camera 204
12.4.6.3 Light 205
12.4.6.4 Animation 205
12.4.6.5 Render 205
12.5 Conclusion 206
References 206
13 Virtual Manufacturing: Scope, Socio-economic Aspects and Future Trends 207
13.1 Introduction 207
13.2 Scope of Virtual Manufacturing 207
13.2.1 Design-Centered VM 208
13.2.2 Production Centered VM 208
13.2.3 Control Centered VM 208
13.3 Economics and Socio-economic Aspects of VM 209
13.4 Economic Aspects 210
13.5 Trends and Exploitable Results 211
13.5.1 Machine Tool 211
13.5.2 Automotive 211
13.5.3 Aerospace 212
13.6 Future Scope of VM 212
References 213

Erscheint lt. Verlag 17.4.2018
Reihe/Serie Materials Forming, Machining and Tribology
Zusatzinfo XVIII, 201 p.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
Schlagworte Abrasive jet machining • Machine Tools • mechanical processes • thermal processes • Virtual Manufacturing
ISBN-10 3-319-76075-0 / 3319760750
ISBN-13 978-3-319-76075-9 / 9783319760759
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 4,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
69,99