Lignocellulosic Composite Materials (eBook)

Susheel Kalia (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2018
XII, 444 Seiten
Springer International Publishing (Verlag)
978-3-319-68696-7 (ISBN)

Lese- und Medienproben

Lignocellulosic Composite Materials -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book comprehensively summarizes important aspects of research in the active field of lignocellulosic (polymer) composites, including polymer materials from or containing cellulose, hemicellulose and lignin. It describes how these materials can be produced from forest products and natural fibers from sources such as jute, flax, sisal, and many more, and even from agricultural residues (like wheat straw, corn stover, or sugarcane bagasse). In times of high demand for renewable green materials, lignocellulosic materials from organic matter produced by trees, shrubs and agricultural crops present a highly attractive feedstock.
The international authors explain different treatment and fabrication methods for the production of lignocellulosic materials. Other chapters address the properties of these green materials or illustrate specific applications, ranging from food packaging and household products to adsorbents and even conductive polymer composites. In this way, this book offers a broad and comprehensive overview over the entire field of lignocellulosic composite materials.




Susheel Kalia is Associate Professor & Head of the Department of Chemistry at Army Cadet College Wing of the Indian Military Academy Dehradun. He was visiting researcher in the Department of Civil, Chemical, Environmental and Materials Engineering at University of Bologna, Italy, in 2013, and held a position as Assistant Professor in the Department of Chemistry, Bahra University, Solan, India until 2015. His research interests include polymeric composites, bio- and nanocomposites, conducting polymers, nanofibers, nanoparticles, hybrid materials, hydrogels, and cryogenics, and are documented in more than 65 research papers in international journals, over 80 conference contributions (incl. numerous invited contributions) and several book chapters. Kalia is an experienced book editor, and he has edited a number of successful books (with Springer and other publishers), such as 'Cellulose Fibers: Bio- and Nano-Polymer Composites', 'Polymers at Cryogenic Temperatures', or 'Polysaccharide Based Graft Copolymers'. 

Kalia is the main editor of the 'Springer Series on Polymer and Composite Materials'. In addition he is a member of a number of professional organizations, including the Asian Polymer Association, Indian Cryogenics Council, the Society for Polymer Science, Indian Society of Analytical Scientists, and the International Association of Advanced Materials.

Susheel Kalia is Associate Professor & Head of the Department of Chemistry at Army Cadet College Wing of the Indian Military Academy Dehradun. He was visiting researcher in the Department of Civil, Chemical, Environmental and Materials Engineering at University of Bologna, Italy, in 2013, and held a position as Assistant Professor in the Department of Chemistry, Bahra University, Solan, India until 2015. His research interests include polymeric composites, bio- and nanocomposites, conducting polymers, nanofibers, nanoparticles, hybrid materials, hydrogels, and cryogenics, and are documented in more than 65 research papers in international journals, over 80 conference contributions (incl. numerous invited contributions) and several book chapters. Kalia is an experienced book editor, and he has edited a number of successful books (with Springer and other publishers), such as "Cellulose Fibers: Bio- and Nano-Polymer Composites", "Polymers at Cryogenic Temperatures", or "Polysaccharide Based Graft Copolymers". Kalia is the main editor of the "Springer Series on Polymer and Composite Materials". In addition he is a member of a number of professional organizations, including the Asian Polymer Association, Indian Cryogenics Council, the Society for Polymer Science, Indian Society of Analytical Scientists, and the International Association of Advanced Materials.

Preface 6
Contents 9
About the Editor 11
1 Lignocellulosic Materials of Brazil––Their Characterization and Applications in Polymer Composites and Art Works 13
Abstract 13
1 Introduction 14
2 Plant Fibers of Brazil 17
2.1 Plants and Fibers––Availability and Production 17
2.2 About Fibers 20
2.2.1 Arundo Donax (Giant Cane or Reed/Wild Cane) 20
2.2.2 Bamboo 21
2.2.3 Banana Fibers 21
2.2.4 Brazil Nut Fibers 21
2.2.5 Buriti Fibers 22
2.2.6 Capim-dos-pampas (Cortaderia Selloana) Pampas Grass Fibers 22
2.2.7 Coconut Fiber or Coir Fiber 23
2.2.8 Cotton 23
2.2.9 Curauá Fibers 24
2.2.10 Jute Fibers 24
2.2.11 Malva Fibers 24
2.2.12 Piaçava (Piassava) Fibers 25
2.2.13 Pineapple Fibers 25
2.2.14 Prosopis Juliflora 25
2.2.15 Ramie Fibers 25
2.2.16 Sisal Fibers 26
2.2.17 Sponge Gourd (Luffa Cylindrica) Fibers 26
2.2.18 Sugarcane Bagasse 26
2.2.19 Other Lignocellulosic Fibers 26
2.2.20 Textile Fibers 27
2.3 Surface Treatments/Modification of Fibers 27
2.4 Justification for This Chapter and Objectives 28
3 Characterization of Plant Fibers 30
3.1 Methods of Characterization (Techniques and Equipment Used) 30
3.1.1 Physical Properties 31
Dimensions of Fibers 31
Density of Fibers 32
Micro-fibrillar Angle and Crystallinity of Fibers 32
Moisture Absorption of Fibers 34
Electrical Properties 35
Flammability 36
3.1.2 Chemical Characterization 36
3.1.3 Thermal Characterization 38
3.1.4 Mechanical Characterization 39
3.1.5 Theoretical Considerations for Dimensional Analysis and Prediction of Properties 39
3.1.6 Textile Properties 42
3.1.7 Surface Treatments of Lignocellulosic Fibers 43
3.1.8 Structural Aspects (Morphology and Fractography) 44
4 Observations of Structure and Properties 45
4.1 Physical Characterization 45
4.1.1 Dimensions of Fibers 45
4.1.2 Density of Fibers 45
4.1.3 Microfibrillar Angle and Crystallinity of Fibers 45
4.1.4 Moisture Absorption of Fibers 49
4.1.5 Electrical Properties of Fibers 50
4.2 Chemical Characterization 50
4.3 Thermal Characterization 55
4.4 Mechanical Properties (Tensile, Flexural, and Impact Properties) 56
4.5 Surface Treatments of Lignocellulosic Fibers 59
4.6 Theoretical Aspects (Weibull Analysis and Artificial Neural Network) 60
4.6.1 Weibull Analysis 60
4.6.2 Artificial Neural Network (ANN) 63
4.7 Structural Aspects 66
4.7.1 Morphology and Fractography 66
4.7.2 Results of Surface Treatments 69
5 Applications of Lignocellulosic Fibers 70
5.1 Nanomaterials 72
5.2 Composites of Lignocellulosic Fibers of Brazil 74
5.2.1 Polymer-Based Composites 77
Processing Aspects of Polymer-Based Composites 78
Structure-Properties Aspects of Polymer-Based Composites 78
5.2.2 Ceramic/Cement-Based Composites 85
5.3 Fiber Used as a Material in Fine Arts 87
5.3.1 Fiber as a Material Reference and Historical Reference to Domesticity 88
5.3.2 Choosing Fiber for Its Aesthetic Appearance and Tactile Nature 90
5.3.3 Taking the Craft of Fiber Arts into the Realm of Fine Art 92
5.3.4 Lignocellulosic Fiber Composites in Arts 94
6 Concluding Remarks 96
Acknowledgements 97
References 97
2 Retting Process as a Pretreatment of Natural Fibers for the Development of Polymer Composites 109
Abstract 109
1 Introduction 110
2 Plant Fibers as Renewable Resources for Polymer Composites 111
3 The Retting Techniques 113
3.1 Microbiological Retting 114
3.1.1 Dew Retting 114
3.1.2 Water Retting 116
3.2 Enzymatic Retting 117
3.3 Mechanical Retting 119
3.4 Physical Retting 122
3.5 Chemical Retting 123
4 Retted Fibers in Polymer Composites Application 125
4.1 Flax 129
4.2 Hemp 132
4.3 Kenaf 134
4.4 Jute 136
4.5 Other 138
5 Conclusions and Future Prospectives 140
References 140
3 Pretreatments of Natural Fibers for Polymer Composite Materials 148
Abstract 148
1 Introduction 149
2 Fiber-Matrix Adhesion 150
3 Lignocellulosic Fiber 150
4 Surface Modification of Lignocellulosic Fiber 152
4.1 Chemical Treatments 153
4.1.1 Alkali Treatment 153
4.1.2 Silane Treatment 157
4.1.3 Esterification 160
Esterification with Acetyl Groups 160
Esterification with Fatty Acids 162
Esterification with Maleate Groups 162
4.1.4 Reaction with Free Radicals 164
Peroxide Treatment 164
Acrylonitrile Grafting 165
Acrylate Grafting 165
4.1.5 Etherification Reactions 167
4.1.6 Benzoylation Treatment 168
4.1.7 Isocyanate Treatment 169
4.1.8 Oxidation Reactions 170
Permanganate Treatment 170
Furfuryl Alcohol Modification 171
4.2 Physical Treatments 172
4.2.1 Steam Explosion Treatment 172
4.2.2 Plasma and Corona Treatments 173
4.2.3 Dielectric-Barrier Discharge Treatment 175
4.3 Biological Treatments 177
4.3.1 Fungal Treatment 177
4.3.2 Enzyme Treatment 178
5 Conclusion 180
References 181
4 Mechanical and Thermal Properties of Less Common Natural Fibres and Their Composites 187
Abstract 187
1 Introduction 188
2 Morphological, Chemical and Physical Properties of Less Common Natural Fibres 189
2.1 Okra 189
2.2 Borassus 193
2.3 Arundo donax 194
2.4 Isora 196
2.5 Napier Grass Fibres 196
2.6 Cissus Quadrangularis 197
3 Thermal and Mechanical Properties of Less Common Natural Fibres 198
3.1 Okra 202
3.2 Borassus 203
3.3 Arundo Donax 204
3.4 Isora 205
3.5 Napier Grass Fibres 206
3.6 Cissus Quadrangularis 207
4 Mechanical Properties of Less Common Natural Fibre Reinforced Composites 209
5 Conclusions and Future Perspectives 216
References 216
5 Lignocellulosic Fibres Reinforced Thermoset Composites: Preparation, Characterization, Mechanical and Rheological Properties 224
Abstract 224
1 Environmental Context 225
2 Introduction 226
3 Thermosetting Matrices 227
4 Cellulosic Fibres 230
4.1 Origin of Natural Fibres 230
4.2 Structure of Lignocellulosic Fibres 231
4.3 Chemical Composition of Cellulosic Fibres 233
4.3.1 Cellulose 234
4.3.2 Hemicellulose 235
4.3.3 Lignin 236
4.3.4 Pectins 236
4.3.5 Waxes 237
4.4 The Lignocellulosic Fiber Preparation 238
4.5 Advantages and Disadvantages 238
4.6 Weave Architecture of Reinforcement 239
4.7 Types of Lignocellulosic Fibres 240
4.8 Lignocellulosic Fibres Properties 243
4.9 Lignocellulosic Fiber Modification 244
4.9.1 Alkaline Treatment 244
4.9.2 Treatment with Silanes 246
4.9.3 Acetylation 247
4.9.4 Compatibilizers 248
5 Thermoset Composites Reinforced Lignocellulosic Fiber 250
5.1 Classification of Composites 250
5.1.1 Green Composites 250
5.1.2 Thermoset Composites 250
5.1.3 Hybrid Composites 251
5.2 Processing of Lignocellulosic Fiber Composites 251
5.2.1 Hand Lay up 252
5.2.2 Injection Molding—RTM 252
5.2.3 Infusion 253
5.2.4 Compression Molding 254
5.3 Characterization of Lignocellulosic Fiber Composites 254
5.3.1 Physical Control 255
5.3.2 Flexural Test 256
5.3.3 Tensile Test 257
5.3.4 Rheological Test 258
6 Mechanical and Rheological Properties of Lignocellulosic Fibres Composites 259
6.1 Flexural Properties 259
6.2 Tensile Properties 261
6.3 Rheological Properties 263
7 Improvement of Mechanical Properties of Lignocellulosic Fibres Composites 265
7.1 Effect of Fiber Treatment 265
7.2 Effect of Hybridization 266
7.3 Effect of Fiber Stacking 269
8 Application of Lignocellulosic Fiber Composites 272
8.1 Automobile Industry 272
8.2 Building Sector 274
9 Conclusion 276
References 277
6 Pineapple Leaf Fiber: From Waste to High-Performance Green Reinforcement for Plastics and Rubbers 280
Abstract 280
1 Introduction 282
2 A Novel Fiber Extraction Method 284
2.1 Description of the Process 284
2.2 Characteristic of PALF 284
3 PALF as an Effective Reinforcement for Polymer Matrix Composites 287
3.1 Orienting the Fiber for Maximum Reinforcement 287
3.2 Rubber Matrix Composites 288
3.3 Plastic Matrix Composites 292
4 Conclusions 299
Acknowledgements 299
References 299
7 Lightweight Wood Composites: Challenges, Production and Performance 301
Abstract 301
1 Introduction to Lightweight Wood-Based Composite 302
2 Fibreboard 304
2.1 Wet Process Fibreboards: Softboard 306
2.2 Dry Process Fibreboards: Light MDF and Ultra-Light MDF 307
3 Particleboard 312
3.1 Particleboard Manufacture 312
3.2 Particleboards Made from Light Wood Species 314
3.3 Particleboards with Light fillers 316
4 Extruded Particleboards 319
5 Sandwich Panel 319
5.1 Sandwich Assembly 320
5.2 Types of Sandwich Core Materials 321
6 Conclusion and Future Perspectives 327
Acknowledgements 327
References 327
8 Design and Fabrication of Kenaf Fibre Reinforced Polymer Composites for Portable Laptop Table 331
Abstract 331
1 Background 332
2 Natural Fibre 334
2.1 Kenaf Fibre 335
2.2 Characterists and Properties of Kenaf Fibre 335
3 Matrix 336
3.1 Biodegradable Polymer 336
4 Factors Controlling Performance of Fibre Reinforced Composites 337
4.1 Thermal Stability 337
4.2 Fibre Hydrophilic Nature 337
5 Role of Natural Fibre in Global Industries 338
6 Natural Fibre Composites Fabrication Techniques 339
6.1 Hand Lay-up 339
6.2 Pultrusion 339
6.3 Filament Winding 340
6.4 Compression Moulding 340
6.5 Resin Transfer Moulding 340
7 Methodology 341
7.1 Product Design Specification 341
7.2 Conceptual Design 342
7.3 Detail Design 342
8 Fabrication of Composite Table 343
8.1 Market Investigation 343
8.2 Product Design Specifications (PDS) 344
8.3 Conceptual Design 346
8.4 Concept Generation 346
8.5 Design Evaluation 349
8.6 Detail Design 349
8.7 Specification of the Table 349
8.8 Laptop Platform Design Consideration 350
9 Fabrication of Composite Portable Table 355
9.1 Fibre Preparation 355
9.2 Matrix Preparation 356
9.3 Mould Preparation 356
9.4 Hand Lay-Up Process 357
9.5 Joining and Finishing Process 358
10 Results 358
11 Discussion 360
12 Conclusion 362
References 362
9 Lignocellulosic Materials for Geotextile and Geocomposites for Engineering Applications 365
Abstract 365
1 Introduction 366
1.1 Lignocellulosic Material 367
1.2 Approach Towards Durable Lignocellulosics 369
2 Geotextiles and Geocomposites 370
2.1 Lignocellulosic Materials for Geotextile and Geocomposites 372
3 Designing of Geotextiles with Lignocellulosic Materials 373
3.1 Separation 374
3.2 Reinforcement 376
3.3 Drainage (Fluid Transmission) 378
3.4 Filtration 379
3.5 Erosion Control System and Stabilization of Slopes 380
4 Designing of Geocomposites with Lignocellulosic Materials 385
5 Tests and Parameters for Evaluating the Performance of Geotextiles and Geocomposites 387
5.1 Physical Properties Testing—The Index Tests for GT 387
5.2 Mechanical Testing 389
5.3 Hydraulic Properties Testing 392
5.4 Serviceability Tests 393
6 Applications 394
7 Conclusions 394
References 395
10 Lignocellulosic Fibres-Based Biocomposites Materials for Food Packaging 397
Abstract 397
1 Introduction 398
2 The Role of Packaging to Reduce Food Waste and Losses 401
2.1 Importance of Mass Transfer in the Food/Packaging System 401
2.2 Modelling Tools and Decision Support Systems 402
3 Mass Transfer Properties of Biocomposites for Food Packaging 403
3.1 Basic Knowledge on Mass Transfers 403
3.2 Gas and Water Vapour Transfer Properties in Raw Constituents 405
3.3 Gas and Water Vapour Transfer Properties in Biocomposites 406
4 Economical Competitiveness 409
4.1 Raw Materials: Towards the Valorization of Agro-Residues 409
4.2 Shaping Processes 409
5 Safety Issues of Biocomposites 411
5.1 Regulation and Food Contact Ability 411
5.2 Undesirable Migrations from Biocomposites and Challenge Tests 413
6 Environmental Impact of Biocomposites: End of Life 414
6.1 Options of Waste Management for Biocomposites 414
6.2 Nature of the Polymer Matrix: BioSourced and/or Biodegradable 417
7 Conclusion and Perspectives 418
References 418
11 Lignocellulosic Fibres Reinforced Polymer Composites for Acoustical Applications 422
Abstract 422
1 Introduction 423
2 Sound Absorbers 426
3 Sound Absorbing Materials 427
4 Mechanism of Sound Energy Absorption in Lignocellulosic Fibre Composites 429
5 Factors Affecting Sound Absorption Coefficients of Lignocellulosic Fibre Reinforced Composites 430
5.1 Fibre Size 430
5.2 Porosity 431
5.3 Flow Resistivity 432
5.4 Density 432
5.5 Thickness 433
5.6 Tortuosity 434
5.7 Compression 434
5.8 Surface Impedance 435
5.9 Placement/Design 435
5.10 Temperature 436
6 Methods to Measure Sound Absorption Coefficient of Composites 436
6.1 Reverberation Method 437
6.2 Standing Wave Method 437
6.3 Two-Microphone Transfer Functions Method 438
7 Fabrication of Lignocellulosic Fibre Reinforced Polymer Matrix Composites 440
8 Sound Absorption Simulations 441
8.1 Empirical Model for Sound Absorbing Materials 441
8.2 Empirical Model for the Flow Resistivity 443
8.2.1 Mechel Model 443
8.2.2 Bies and Hansen Model 444
8.2.3 Garai and Pompoli Model 445
8.3 Empirical Model for the Sound Absorption Coefficient 445
8.3.1 Delany and Bazley Model 445
8.3.2 Garai and Pompoli 446
9 Conclusions 447
References 448

Erscheint lt. Verlag 23.12.2017
Reihe/Serie Springer Series on Polymer and Composite Materials
Zusatzinfo XII, 444 p. 195 illus., 113 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik Maschinenbau
Schlagworte Carbohydrate polymers • Cellulose-based materials • Forest wood products • Green Materials • Hemicellulose • Hierarchical fibrilar composites • Lignin • lignocellulosic biomass • Lignocellulosic composites • Materials from agricultural residues • Natural Fibers • Renewable feedstocks • Wood Science and Technology
ISBN-10 3-319-68696-8 / 3319686968
ISBN-13 978-3-319-68696-7 / 9783319686967
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 13,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
79,99