Studies in Musical Acoustics and Psychoacoustics (eBook)

Albrecht Schneider (Herausgeber)

eBook Download: PDF
2016 | 1. Auflage
XII, 452 Seiten
Springer-Verlag
978-3-319-47292-8 (ISBN)

Lese- und Medienproben

Studies in Musical Acoustics and Psychoacoustics -
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book comprises twelve articles which cover a range of topics from musical instrument acoustics to issues in psychoacoustics and sound perception as well as neuromusicology. In addition to experimental methods and data acquisition, modeling (such as FEM or wave field synthesis) and numerical simulation plays a central role in studies addressing sound production in musical instruments as well as interaction of radiated sound with the environment. Some of the studies have a focus on psychoacoustic aspects in regard to virtual pitch and timbre as well as apparent source width (for techniques such as stereo or ambisonics) in music production. Since musical acoustics imply subjects playing instruments or singing in order to produce sound according to musical structures, this area is also covered including a study that presents an artificial intelligent agent capable to interact with a real ('analog') player in musical genres such as traditional and free jazz. 

Contents 6
Introduction 8
1 Japanese Flutes and Their Musical Acoustic Peculiarities 14
Abstract 14
1 Introduction 14
2 The Shakuhachi 15
2.1 Brief History 15
2.2 Unique Structural Properties 16
2.3 Sound Examples 19
2.4 Acoustical Differences Between Classical and Modern Shakuhachis 20
2.5 Intonation Anomaly Due to Cross Fingerings 23
3 The Nohkan 30
3.1 Brief History 30
3.2 Unique Structural Properties 31
3.3 Sound Examples 32
3.4 Numerical Calculation on the Effects of Nodo 35
3.5 Numerical Calculation on the Effects of Nodo Shape 41
3.6 Perturbation Theory Applied to the Nohkan 44
3.7 A Comparison of the Nohkan with the Piccolo 45
4 The Shinobue 51
4.1 Brief History 51
4.2 Unique Structural Properties 51
4.3 Sound Examples 53
4.4 Acoustical Effects of a Membrane Hole 54
5 Conclusions 56
Bibliography 58
2 Acoustics of the Qin 61
Abstract 61
1 Introduction 61
2 History 62
3 Construction 63
4 Playing the Qin 65
5 Construction 66
5.1 Wood 66
5.1.1 Paulownia 66
5.1.2 Firmiana simplex 69
5.1.3 Catalpa 69
5.1.4 China Fir 69
5.2 Lacquer 69
5.3 Strings 70
6 Vibroacoustics 72
6.1 Acoustics of Long Soundboxes 72
6.2 Surface Velocities 73
6.2.1 Wood 73
6.2.2 Air 74
6.2.3 Wood and Air 74
7 Sound 75
7.1 Table Effects 77
8 Simulations 78
8.1 Construction of the Finite Element Model of the Qin 79
8.2 Back Plate Study 80
8.3 FEM Analysis of Historical Qins 81
9 Concluding Remarks 83
Acknowledgments 84
References 84
3 Tone Production of the Wurlitzer and Rhodes E-Pianos 87
Abstract 87
1 Introduction 88
2 History 89
2.1 History of the Rhodes 89
2.2 History of the Wurlitzer 90
3 Physical Properties 91
3.1 Sound Production of the Fender Rhodes Electric Piano 91
3.1.1 Measured Instrument 93
3.2 Sound Production of the Wurlitzer EP300 93
3.2.1 Measured Instrument 94
4 Methods 95
4.1 Camera Tracking 95
4.2 Audio Measurements 96
5 Measurements 96
5.1 Rhodes 97
5.2 Wurlitzer 98
6 Intermediate Results 100
7 Finite Element Models of Sound Production Assemblies 100
7.1 Magnetic Field of the Rhodes Pickup 100
7.2 Electrodynamic Interaction of the Wurlitzer Piano 101
8 Finite Difference Models 104
8.1 Rhodes Exciter Model 104
8.1.1 Finite Difference Approximation 106
8.2 Wurlitzer Exciter Model 106
8.2.1 Finite Difference Approximation 107
8.3 Rhodes Pickup Model 108
8.4 Wurlitzer Pickup Model 110
8.5 Modeling Results 111
9 Outlook 114
9.1 Additional Notes on Electronics 114
10 Conclusion 115
Acknowledgments 115
Appendix I 116
Appendix II 116
References 117
4 Feedback of Different Room Geometries on the Sound Generation and Sound Radiation of an Organ Pipe 120
Abstract 120
1 Introduction 120
2 General Notes on Numerical Implementation and Numerical Simulation 122
3 The Effect of Complex Geometries 123
3.1 The Initial Excitation Process 125
3.2 Sound Pressure Level Spectra 134
3.3 Phase Portraits 137
4 The Feedback Effect of Swell Chamber Geometries 140
4.1 Numerical Simulations of an Organ Pipe within Swell Chambers 141
4.2 Analysis 145
4.3 Sound Pressure Level Spectra Inside the Organ Pipe 146
4.4 Higher Harmonics 148
4.5 Spatially Averaged Sound Pressure Level Spectra of the Cut-up Region 148
4.6 Auto-synchronization of the Organ Pipe by Swell Chambers Feedback 150
5 Summary 152
Acknowledgments 153
Bibliography 153
5 Acoustical Modeling of Mutes for Brass Instruments 154
Abstract 154
1 Introduction 154
2 Hand-in-Bell and Hand-Stopping in the French Horn 155
2.1 Effects of Hand in Horn Bell 155
2.2 Hand Stopping and Stopping Mute 157
2.3 Acoustical Modeling of Hand-in-Bell and Hand Stopping 159
2.4 Input Impedances of the Open, Normal, and Stopped Horns 161
2.5 Pressure Distribution Along the Horn 163
2.6 Physical Cause of Metallic Timbre by Hand Stopping 164
3 Stopping Mute for the French Horn 168
3.1 Structure of Stopping Mute and Its Acoustical Characteristics 168
3.2 Pressure Distribution Along the Horn 170
3.3 Tonal Difference Between Stopping Mute and Hand Stopping 171
4 Straight Mute for the French Horn 173
4.1 Structure of Straight Mute 173
4.2 Branching System Theory and Its Incorporation into T-Matrix Formulation 174
4.3 Acoustical Modeling of the Horn with the Straight Mute 175
4.4 Effects of Other Parameters of the Straight Mute 178
5 Application to Trumpet Mutes 180
5.1 Structures and Models of Trumpet Mutes 180
5.2 Numerical Calculation of the Trumpet with the Straight Mute 182
5.3 Numerical Calculation of the Trumpet with the Cup Mute 186
5.4 Numerical Calculation of the Trumpet with the Wah-Wah Mute 189
5.5 Appearance of a New Peak in Muted-Brass Input Impedance 192
6 Conclusions 194
Bibliography 196
6 Experimental Approaches to the Study of Damping in Musical Instruments 198
Abstract 198
1 Introduction 198
2 Definition of Damping 199
3 Classification of Damping 201
4 Measurement Methods 203
4.1 Torsional Pendulum 203
4.2 Bending Beam 204
4.3 Comparison of Different Approaches 205
5 Investigations on a Metal Tongue 206
5.1 Evaluation Using the Reverberation Time Method 207
5.2 Evaluation Using the ?3 dB Method 208
5.3 Interpretation and Comparison of Both Methods 210
6 Conclusion 210
Acknowledgments 211
References 211
7 Comparison of Vocal and Violin Vibrato with Relationship to the Source/Filter Model 212
Abstract 212
1 Introduction 213
2 Vocal Vibrato Analysis 215
3 Violin Vibrato Analysis 221
4 Violin Frequency Response: The Filter Characteristic and Source Spectrum 222
5 Pérez et al. Violin Input-Output Measurement 225
6 Discussion and Conclusions 229
Acknowledgments 231
References 231
8 Vowel Quality in Violin Sounds—A Timbre Analysis of Italian Masterpieces 233
Abstract 233
1 Introduction 233
1.1 Aim of the Study 233
1.2 Basics of Voices and Violins 234
1.3 Related Works on Violin Sound Quality 236
2 VQ Analysis Tool Preparation 237
2.1 Applying Speech Analysis Methods to Bowed String Instruments 237
2.2 Signal Processing 238
2.3 Representation of VQ on the IPA Chart 239
3 Examples of VQ Extracted from Bowed String Instruments 240
4 Validation 243
4.1 Validation Against Voice Reference 243
4.2 Analysis Modifications Toward Violins and Perceptual Verification 243
4.3 Impact of Musician 245
4.4 Impact of Room Acoustics 248
5 Results for Italian Masterpieces 249
5.1 Investigated Recordings 249
5.2 Results on Italian Masterpieces 249
6 Conclusions 252
Acknowledgments 253
References 253
9 Sound, Pitches and Tuning of a Historic Carillon 256
Abstract 256
1 Introduction 257
1.1 Some Historical and Factual Background 258
1.2 Basic Data Concerning the Dumery Bells 261
2 Basics of Bell Acoustics 264
2.1 Material and Shape 268
2.2 Excitation of Normal Modes and Radiation of Sound 268
3 Inner Harmony and Tuning 275
4 The Strike Note of Bells and Carillon Tuning 282
4.1 The Strike-Note as a Virtual Pitch 283
4.2 Strike Note, Pitch and Timbre 288
4.3 Tuning of the Dumery Carillon Bells in Regard to Prime (f2) Frequencies 300
5 Conclusion 302
Acknowledgments 303
10 Source Width in Music Production. Methods in Stereo, Ambisonics, and Wave Field Synthesis 308
Abstract 308
1 Introduction 308
2 Perception of Source Width 309
2.1 Perceived Source Width in Psychoacoustics 309
2.2 Apparent Source Width in Room Acoustics 312
3 Source Width in Music Production 317
3.1 Source Width in Stereo and Surround 318
3.2 Source Width in Ambisonics 323
3.3 Source Width in Wave Field Synthesis 327
4 Sound Radiation and Source Extent 329
4.1 Measurement Setup 329
4.2 The Complex Point Source Model 330
4.3 Physical Measures 332
4.3.1 Monaural Measures 333
4.3.2 Interaural Measures 336
4.4 Results 341
5 Discussion 345
6 Prospects 346
References 347
11 Methods in Neuromusicology: Principles, Trends, Examples and the Pros and Cons 350
Abstract 350
1 Introduction 350
1.1 Transcranial Magnetic Stimulation: How Does It Work? 351
2 Functional Magnetic Resonance Imaging: Basic Principles and Image Acquisition 352
2.1 BOLD Response and Its Underlying Principle 354
2.2 Techniques of Image Acquisition 355
2.3 The Auditory Cortex—A Challenge to fMRI Research 356
2.4 Positron Emission Tomography: Some Notes on the Signal and on Image Acquisition 358
2.5 Research with FMRI and PET: Example Fields of Music-Related Application 358
2.5.1 Studying the Human Auditory Cortex with PET and FMRI 359
2.5.2 Tonality-Sensitive Areas—An Approach with fMRI 360
2.5.3 Musical Improvisation—An Example of Whole-Brain Image Analysis 360
2.6 Neuroplasticity in Musicians—Structural and Functional Types 364
3 Electroencephalography: The Basics 365
3.1 Research with EEG: Two Example Studies 368
3.2 EEG Sports: A Promising Trend Using Mobile Devices 370
4 Event-Related Potentials (ERPs)—A Derivative of the EEG 372
4.1 The ‘Mismatch Negativity’ (MMN)—An Example Component of the ERP 374
4.2 Syntactic and Semantic Incongruities in Language and Music: ELAN/ERAN, P600 and N400 375
5 Do Advantages Outweigh the Disadvantages?—A Final Assessment of the Methods’ Pros and Cons 377
References 380
12 An Intelligent Music System to Perform Different “Shapes of Jazz—To Come” 384
Abstract 384
1 Introduction 384
1.1 Gestalt-Based Improvisation Model Based on Intuitive Listening 386
1.2 Logic-Based Reasoning Driven World Model 386
2 Automated Music Improvisation Systems for Traditional Jazz 387
2.1 A Brief Overview on Traditional Jazz Practices 387
2.2 Rule-Based Machine Improvisation Algorithms 389
3 Automated Music Improvisation Systems for Free Jazz 390
4 Implementation of CAIRA 394
4.1 Bottom-Up Mechanisms 394
4.1.1 Polyphonic Pitch Perception Model 395
4.1.2 Tension Arc Calculation 397
4.2 Top-Down Mechanisms 398
4.2.1 General Ontology Definitions 399
4.2.2 Music Structure Recognition 400
4.2.3 Agent Beliefs 401
4.2.4 Action 402
4.3 Implementation of a Free Jazz Agent 403
4.4 Implementation of a Traditional Jazz Agent 404
5 Discussion and Conclusion 409
Acknowledgments 410
References 410
13 Explorations in Keyboard Temperaments. Some Empirical Observations 413
Abstract 413
1 Introduction 413
2 Just Intervals: Acoustic and Perceptual Aspects 414
3 Just Intonation and Temperaments: A Brief Historical Review 418
4 Empirical Investigation of Temperaments and Tunings 433
5 Perceptual and Aesthetic Aspects 441
6 Conclusion 446
Acknowledgment 448
References 448

Erscheint lt. Verlag 26.12.2016
Reihe/Serie Current Research in Systematic Musicology
Zusatzinfo XII, 444 p. 268 illus., 169 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Kunst / Musik / Theater Musik
Technik Maschinenbau
Schlagworte Impulse-response Recording • Musical Applications of Finite Element Models • musical instruments • Sound • Synchronization phenomena • Turbulence Simulations
ISBN-10 3-319-47292-5 / 3319472925
ISBN-13 978-3-319-47292-8 / 9783319472928
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 21,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Mathematische Theorie musikalischer Intervalle und historischer …

von Karlheinz Schüffler

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
49,99